

 TECHNICAL REPORT

© The Broadband Forum. All rights reserved.

TR-157
Component Objects for CWMP

Issue : 1 Amendment 10

Issue Date: November 2015

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 2 of 64

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband

network system development and deployment. This Broadband Forum Technical Report has

been approved by members of the Forum. This Broadband Forum Technical Report is not

binding on the Broadband Forum, any of its members, or any developer or service provider. This

Broadband Forum Technical Report is subject to change, but only with approval of members of

the Forum. This Technical Report is copyrighted by the Broadband Forum, and all rights are

reserved. Portions of this Technical Report may be copyrighted by Broadband Forum members.

THIS SPECIFICATION IS BEING OFFERED WITHOUT ANY WARRANTY

WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS

EXPRESSLY DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL BE MADE

ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR

ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY

WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF

ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE

OF THIS SPECIFICATION.

Broadband Forum Technical Reports may be copied, downloaded, stored on a server or

otherwise re-distributed in their entirety only, and may not be modified without the advance

written permission of the Broadband Forum.

The text of this notice must be included in all copies of this Broadband Forum Technical Report.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 3 of 64

Issue History

Issue Number Approval Date Publication Date Issue Editor Changes

Issue 1 March 2009 John

Blackford,

2Wire, Inc.

TimSpets,

Westell

Original

Issue 1

Amendment 1

September 2009 John

Blackford,

2Wire, Inc.

Addition of

SupportedDataMod

el component.

Issue 1

Amendment 2

May 2010 John

Blackford,

2Wire, Inc.

Support for TR-181

Issue 2.

Issue 1

Amendment 3

November 2010 John

Blackford,

Pace

Heather

Kirksey,

Alcatel-

Lucent

Support for

Software Module

Management

Issue 1

Amendment 4

July 2011 Changes to XML

only

Issue 1

Amendment 5

November 2011 Tim Carey,

Alcatel-

Lucent

Heather

Kirksey,

Alcatel-

Lucent

Support for

Location and Fault

Management

Issue 1

Amendment 10

9 November

2015

13 November

2015

Tim Carey,

Alcatel-

Lucent

Support for HTTP

based Bulk Data

Collection

Comments or questions about this Broadband Forum Technical Report should be directed to

help@broadband-forum.org.

Editor Tim Carey Alcatel-Lucent

Broadband User Services

Work Area Directors

John Blackford

Jason Walls

Pace

QA Cafe

mailto:help@broadband-forum.org

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 4 of 64

Table of Contents

EXECUTIVE SUMMARY .. 7

1 PURPOSE AND SCOPE .. 9

1.1 PURPOSE .. 9
1.2 SCOPE .. 9

2 REFERENCES AND TERMI NOLOGY .. 10

2.1 CONVENTIONS ... 10

2.2 REFERENCES .. 11
2.3 DEFINITIONS .. 12

2.4 ABBREVIATIONS .. 14

3 TECHNICAL REPORT IMP ACT ... 15

3.1 ENERGY EFFICIENCY .. 15
3.2 IPV6 ... 15

3.3 SECURITY ... 15

4 CWMP COMMON COMPONEN T PARAMETER DEFINITI ONS 16

ANNEX A: HTTP BULK DATA COLLE CTION... 17

A.1 OVERVIEW ... 17
A.2 ENABLING HTTP/HTTPS BULK DATA COMMUNICATION ... 17

A.2.1 Use of the URI Query Parameters .. 18

A.2.2 Use of HTTP Status Codes .. 19
A.2.2.1 HTTP Retry Mechanism .. 19
A.2.3 Use of TLS and TCP ... 20

A.3 ENCODING OF BULK DATA .. 21
A.3.1 Using Wildcards to Reference Object Instances in the Report 21

A.3.2 Using Alternative Names in the Report .. 22
A.3.2.1 Using Object Instance Wildcards and Parameter Partial Paths with Alternative

Names 22
A.3.3 Processing of Content for Failed Report Transmissions 23
A.3.4 Encoding of CSV Bulk Data .. 24
A.3.4.1 Defining the Report Layout of the Encoded Bulk Data .. 24
A.3.4.2 Layout of Content for Failed Report Transmissions... 25

A.3.5 Encoding of JSON Bulk Data ... 25

A.3.5.1 Defining the Report Layout of the Encoded Bulk Data .. 25

A.3.5.2 Layout of Content for Failed Report Transmissions... 26
A.3.5.3 Using the ObjectHierarchy Report Format .. 26
A.3.5.4 Using the NameValuePair Report Format ... 27
A.3.5.5 Translating Data Types... 27

A.4 REPORT EXAMPLES .. 28
A.4.1 CSV Encoded Report Examples .. 28
A.4.1.1 CSV Encoded Reporting Using ParameterPerRow Report Format 28

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 5 of 64

A.4.1.2 CSV Encoded Reporting Using ParameterPerColumn Report Format 29

A.4.2 JSON Encoded Report Example ... 30

APPENDIX I. USB HOST THEORY OF OPERATION .. 33

I.1 OVERVIEW ... 33

APPENDIX II. SOFTWARE MODU LE MANAGEMENT ... 35

II.1 OVERVIEW ... 35
II.2 LIFECYCLE MANAGEMENT ... 35
II.3 SOFTWARE MODULES .. 36
II.4 EXECUTION ENVIRONMENT CONCEPTS .. 45

II.5 FAULT MODEL ... 47

APPENDIX III. LOCATION MANAGEMENT .. 53

III.1 OVERVIEW ... 53
III.2 MULTIPLE INSTANCES OF LOCATION DATA ... 53
III.3 TR-069, MANUAL , GPS, AND AGPS CONFIGURED LOCATION 54

APPENDIX IV. FAULT MANAGEMENT .. 58

IV.1 OVERVIEW ... 58

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 6 of 64

List of Tables

Table 1 – CWMP Common Component Data Model Versions ... 16
Table 2 – Data Transfer Retry Wait Intervals ... 19

Table 3 – TR-106 Data Type Translation - JSON .. 27
Table 4 – FM Object Definition.. 58
Table 5 – FM Object Usage .. 61

List of Figures

Figure 1 - Example USB Host Connections ... 33

Figure 2 – Deployment Unit State Diagram ... 37
Figure 3 – Execution Unit State Diagram ... 41

Figure 4 – Installation of a Deployment Unit - CWMP Session #1 ... 44
Figure 5 – Configuring and Starting the Execution Units - CWMP Session #2 45

Figure 6 – Possible Multi-Execution Environment Implementation .. 46
Figure 7 – Expedited Event Handling ... 62
Figure 8 – Queued Event Handling .. 63

Figure 9 – Logged Event Handling ... 63

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 7 of 64

Executive Summary

The architecture of TR-069 [1] and TR-106 [2] enables device management of CPE devices in

the customer’s home, including the home gateway, and devices behind it.

This Technical Report defines additional management objects for use in CWMP managed

devices. The objects can exist at the top level of a hierarchy, or in some cases within an existing

object. The objects are intended for use in all CWMP root objects (both Device and

InternetGatewayDevice). The objects define varying functionality, diagnostics, etc., that are

agnostic to the type of device.

The additional management objects defined in this Technical Report includes the following:

Enhanced device diagnostic and monitoring capabilities - These enhanced features include

the ability to monitor device memory and process status as well as reporting of temperature

sensor status and alarms. Two diagnostic tests have also been added: Namespace Lookup and

hardware-specific self-test.

Autonomous Transfer and Multi-cast Download Policy Configuration - This specification

completes the additions to CWMP undertaken in collaboration with DVB to ensure TR-069’s

ability to meet the needs of IP video environments. In TR-069 [1] capabilities for multi-cast

download and autonomous transfers were added to the CWMP protocol; in this Technical

Report, objects have been added for managing the policies around autonomous transfer reporting

and configuring the multicast download availability.

Simple Firewall - Simple firewall management has been defined in this specification.

USB Hosts - This specification contains objects that enable the remote management of USB

Hosts and policies for the behavior of attached USB devices.

UPnP and DLNA discovery - UPnP is a widely deployed home networking technology; DLNA

digital home servers and digital home players use UPnP technology to provide content streaming

and sharing across devices in the home. Objects defined in this specification enable the reporting

of UPnP and DLNA devices and capabilities in the home network in order to give service

providers increased visibility into the subscriber home.

Periodic Stats - The periodic stats object allows for the collection and reporting of performance

monitoring data for TR-069 enabled devices.

Supported Data Model – This table lists all of the Device Type (as defined in TR-106 [2])

instances that make up the device’s entire supported data model and thus allows an ACS to easily

discover the device’s supported data model.

Software Module Management – These objects enable the management of software modules

on a device in order to allow service providers to deploy dynamic applications and services. The

capabilities include configuring and managing Execution Environments, Deployment Units, and

Execution Units.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 8 of 64

Location Management – These objects enable the management of location data within a device.

Fault Management – These objects enable allows for the logging and reporting of alarms and

events within a device.

HTTP Bulk Data Collection – This annex describes how to use the Bulk Data Collection

objects for transport over HTTP.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 9 of 64

1 Purpose and Scope

1.1 Purpose

The purpose of TR-157 is to provide Component Objects for CWMP.

A Component Object is defined as an object and their contained parameters intended for use in

any applicable CWMP root data model (both Device). The object(s) can reside at the top level or

an appropriate sub-object level.

1.2 Scope

TR-157 defines Component Objects for use in CWMP managed devices for all root data models.

The current root data models are Device:1 defined in TR-181 Issue 1 [3], and Device:2 defined

in TR-181 Issue 2 [4].

Sections containing "Theory of Operations" for Component Objects are located in the

appendices.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 10 of 64

2 References and Terminology

2.1 Conventions

In this Technical Report several words are used to signify the requirements of the specification.

These words are often capitalized.

MUST This word, or the term "REQUIRED", means that the definition is an

absolute requirement of the specification.

MUST NOT This phrase means that the definition is an absolute prohibition of the

specification.

SHOULD This word, or the adjective "RECOMMENDED", means that there could

exist valid reasons in particular circumstances to ignore this item, but the full

implications need to be understood and carefully weighed before choosing a

different course.

SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" means that there could

exist valid reasons in particular circumstances when the particular behavior

is acceptable or even useful, but the full implications need to be understood

and the case carefully weighed before implementing any behavior described

with this label.

MAY This word, or the adjective "OPTIONAL", means that this item is one of an

allowed set of alternatives. An implementation that does not include this

option MUST be prepared to inter-operate with another implementation that

does include the option.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 11 of 64

2.2 References

The following references constitute provisions of this Technical Report. At the time of

publication, the editions indicated were valid. All references are subject to revision; users of this

Technical Report are therefore encouraged to investigate the possibility of applying the most

recent edition of the references listed below. A list of currently valid Broadband Forum

Technical Reports is published at www.broadband-forum.org.

Document Title Source Year

[1] TR-069

Amendment 5

CPE WAN Management Protocol Broadband

Forum

2013

[2] TR-106

Amendment 7

Data Model Template for TR-069-Enabled

Devices

Broadband

Forum

2013

[3] TR-181

Issue 1

Device Data Model for TR-069 Broadband

Forum

2010

[4] TR-181

Issue 2

Amendment 10

Device Data Model for TR-069 Broadband

Forum

2015

[5] TR-098

Amendment 1

Internet Gateway Device Data Model for TR-

069

(DEPRECATED)

Broadband

Forum

2014

[6] TR-104

Issue 2

Provisioning Parameters for VoIP CPE Broadband

Forum

2014

[7] RFC 4122 A Universally Unique IDentifier (UUID) URN

Namespace

IETF 2005

[8] RFC 5491 GEOPRIV Presence Information Data Format

Location Object (PIDF-LO) Usage

Clarification, Considerations, and

Recommendation

IETF 2009

[9] RFC 5139 Revised Civic Location Format for Presence

Information Data Format Location Object

(PIDF-LO)

IETF 2008

[10] RFC 4119 A Presence-based GEOPRIV Location Object

Format

IETF 2005

[11] IETF draft Relative Location Representation ï draft-ietf- IETF

www.broadband-forum.org
http://www.ietf.org/rfc/rfc4122.txt
http://www.rfc-editor.org/rfc/rfc5491.txt
http://www.rfc-editor.org/rfc/rfc5139.txt
http://www.rfc-editor.org/rfc/rfc4119.txt
http://tools.ietf.org/html/draft-ietf-geopriv-relative-location-00

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 12 of 64

geopriv-relative-location-00

[12] IANA

Method Tokens

Method Tokens IANA 2008

[13] RFC 4479 A Data Model for Presence IETF 2006

[14] GML 3.2.1 OpenGIS Geography Markup Language (GML)

Encoding Standard

Open

Geospatial

Consortium

(OGC)

[15] TR-232 Bulk Data Collection Broadband

Forum

2012

[16] RFC 4180 Common Format and MIME Type for Comma-

Separated Values (CSV) Files

IETF 2005

[17] RFC 7159 The JavaScript Object Notation (JSON) Data

Interchange Format.

IETF 2014

[18] RFC 2616 Hypertext Transfer Protocol ï HTTP/1.1 IETF 1999

[19] RFC 6066 Transport Layer Security (TLS) Extensions:

Extension Definitions

IETF 2011

[20] RFC 6125 Representation and Verification of Domain-

Based Application Service Identity within

Internet Public Key Infrastructure Using X.509

(PKIX) Certificates in the Context of Transport

Layer Security (TLS)

IETF 2011

[21] RFC 5246 The Transport Layer Security (TLS) Protocol,

Version 1.2

IETF 2008

2.3 Definitions

The following terminology is used throughout this Technical Report:

ACS Auto-Configuration Server. This is a component in the broadband network

responsible for auto-configuration of the CPE for advanced services.

Action An explicitly triggered transition in the software module state model (see Appendix

II); e.g. Install, Update, Uninstall, Start, Stop, etc.

CPE Customer Premises Equipment; refers to any TR-069-enabled device and therefore

covers both Internet Gateway devices and LAN-side end devices.

http://www.iana.org/assignments/method-tokens/method-tokens.xhtml
http://www.iana.org/assignments/method-tokens/method-tokens.xhtml
http://www.rfc-editor.org/rfc/rfc4479.txt
http://www.opengeospatial.org/standards/gml

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 13 of 64

CWMP CPE WAN Management Protocol. Defined in TR-069 [1], CWMP is a

communication protocol between an ACS and CPE that defines a mechanism for

secure auto-configuration of a CPE and other CPE management functions in a

common framework.

Deployment Unit An entity that can be individually deployed on the Execution Environment. A

Deployment Unit can consist of functional Execution Units and/or configuration

files and/or other resources

Execution

Environment

A software platform that enables the dynamic loading and unloading of software

modules. Some Execution Environments enable the sharing of resources amongst

modules. Typical examples include Linux, OSGi, .NET, and Java ME. There will

likely be one primary Execution Environment on each device, and other "layered"

Execution Environments can also be exposed (e.g. OSGi on top of Linux).

Execution Unit A functional entity that, once started, initiates processes to perform tasks or provide

services, until it is stopped. Execution Units are deployed by Deployment Units.

The following list of concepts could be considered an Execution Unit: services,

scripts, software components, libraries, etc.

Software Module The common term for all software (other than firmware) that will be installed on an

Execution Environment, including the concepts of Deployment Units and Execution

Units.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 14 of 64

2.4 Abbreviations

This Technical Report defines the following abbreviations:

CPE Customer Premise Equipment

CPU Central Processing Unit

DDD Device Description Document

DLNA Digital Living Network Alliance

DNS Domain Name System

DU Deployment Unit

EE Execution Environment

EU Execution Unit

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over Secure Socket Layer

IGD Internet Gateway Device

LAN Local Area Network

NAT Network Address Translation

QoS Quality of Service

RAM Random Access Memory

SSDP Simple Service Discovery Protocol

TCP Transmission Control Protocol

TR Technical Report

URL Universal Resource Locator

USB Universal Serial Bus

USB-IF USB Implementer’s Forum

USN Unique Service Name

UTC Coordinated Universal Time

UUID Universally Unique Identifier

WAN Wide Area Network

WG Working Group

XML Extensible Markup Language

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 15 of 64

3 Technical Report Impact

3.1 Energy Efficiency

TR-157 has no impact on energy efficiency.

3.2 IPv6

TR-157 has no impact on IPv6 support and compatibility.

3.3 Security

There are no relevant security issues relating to TR-157.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 16 of 64

4 CWMP Common Component Parameter Definitions

The normative definitions of the CWMP common component data model, along with links to the

associated XML and HTML files, are defined in Table 1.

Because new minor versions of the CWMP component data model can be defined without re-

publishing this Technical Report, the table is not necessarily up-to-date. An up-to-date version

of the table can always be found at http://www.broadband-forum.org/cwmp.

Table 1 ï CWMP Common Component Data Model Versions

DM Instance XML and HTML

tr-157-1-1.xml
http://broadband-forum.org/cwmp/tr-157-1-1.xml

http://broadband-forum.org/cwmp/tr-157-1-1.html

tr-157-1-2.xml
http://broadband-forum.org/cwmp/tr-157-1-2.xml

http://broadband-forum.org/cwmp/tr-157-1-2.html

tr-157-1-3.xml
http://broadband-forum.org/cwmp/tr-157-1-3.xml

http://broadband-forum.org/cwmp/tr-157-1-3.html

tr-157-1-4.xml
http://broadband-forum.org/cwmp/tr-157-1-4.xml

http://broadband-forum.org/cwmp/tr-157-1-4.html

tr-157-1-5.xml
http://broadband-forum.org/cwmp/tr-157-1-5.xml

http://broadband-forum.org/cwmp/tr-157-1-5.html

tr-157-1-6.xml
http://broadband-forum.org/cwmp/tr-157-1-6.xml

http://broadband-forum.org/cwmp/tr-157-1-6.html

tr-157-1-7.xml
http://broadband-forum.org/cwmp/tr-157-1-7.xml

http://broadband-forum.org/cwmp/tr-157-1-7.html

tr-157-1-8.xml
http://broadband-forum.org/cwmp/tr-157-1-8.xml

http://broadband-forum.org/cwmp/tr-157-1-8.html

tr-157-1-9.xml
http://broadband-forum.org/cwmp/tr-157-1-9.xml

http://broadband-forum.org/cwmp/tr-157-1-9.html

tr-157-1-10.xml
http://broadband-forum.org/cwmp/tr-157-1-10.xml

http://broadband-forum.org/cwmp/tr-157-1-10.html

http://www.broadband-forum.org/cwmp
http://broadband-forum.org/cwmp/tr-157-1-1.xml
http://broadband-forum.org/cwmp/tr-157-1-1.html
http://broadband-forum.org/cwmp/tr-157-1-2.xml
http://broadband-forum.org/cwmp/tr-157-1-2.html
http://broadband-forum.org/cwmp/tr-157-1-3.xml
http://broadband-forum.org/cwmp/tr-157-1-3.html
http://broadband-forum.org/cwmp/tr-157-1-4.xml
http://broadband-forum.org/cwmp/tr-157-1-4.html
http://broadband-forum.org/cwmp/tr-157-1-5.xml
http://broadband-forum.org/cwmp/tr-157-1-5.html
http://broadband-forum.org/cwmp/tr-157-1-6.xml
http://broadband-forum.org/cwmp/tr-157-1-6.html
http://broadband-forum.org/cwmp/tr-157-1-7.xml
http://broadband-forum.org/cwmp/tr-157-1-7.html
http://broadband-forum.org/cwmp/tr-157-1-8.xml
http://broadband-forum.org/cwmp/tr-157-1-8.html
http://broadband-forum.org/cwmp/tr-157-1-9.xml
http://broadband-forum.org/cwmp/tr-157-1-9.html
http://broadband-forum.org/cwmp/tr-157-1-10.xml
http://broadband-forum.org/cwmp/tr-157-1-10.html

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 17 of 64

Annex A: HTTP Bulk Data
Collection

This section discusses the Theory of Operation for the collection and transfer of bulk data using

TR-069 [1], HTTP and the BulkData object defined in the Root data model.

A.1 Overview

This section describes a method to collect within the CPE and transfer collected data to a Bulk

Data Collector in the service provider network utilizing:

¶ HTTP/HTTPS for the transfer of collected data

¶ CSV and JSON for the encoding of collected data to be transferred

The CPE configuration that enables the collection of bulk data using HTTP is defined using the

BulkData component objects defined within this specification.

A.2 Enabling HTTP/HTTPS Bulk Data Communication

HTTP/HTTPS communication between the CPE and Bulk Data Collector is enabled by

configuring the BulkData.Profile object for the HTTP/HTTPS transport protocol adding a new

BulkData.Profile object instance using the AddObject RPC and configuring it with

SetParameterValue RPC. For example:

¶ .BulkData.Profile.1

¶ .BulkData.Profile.1.Enable=true

¶ .BulkData.Profile.1.Protocol = "HTTP"

¶ .BulkData.Profile.1.ReportingInterval = 300

¶ .BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

¶ .BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"

¶ .BulkData.Profile.1.HTTP.Username = "username"

¶ .BulkData.Profile.1.HTTP.Password = "password"

¶ .BulkData.Profile.1.HTTP.Method = "POST"

¶ .BulkData.Profile.1.HTTP.UseDateHeader = true

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 18 of 64

The configuration above defines a profile that transfers data from the CPE to the Bulk Data

Collector (bdc.acme.com/somedirectory) using secured HTTP. In addition the CPE will provide

authentication credentials (username, password) to the Bulk Data Collector, if requested by the

Bulk Data Collector. Finally the CPE establishes a communication session with the Bulk Data

Collector every 300 seconds in order to transfer the data defined by the BulkData Report object

instance.

Once the communication session is established between the CPE and Bulk Data Collector the

data is transferred from the CPE using the POST HTTP method with a HTTP Date header and no

compression.

In many scenarios CPEs will utilize "chunked" transfer codings. As such, the Bulk Data

Collector MUST support the HTTP transfer-coding value of "chunked".

A.2.1 Use of the URI Query Parameters

The HTTP Bulk Data transfer mechanism allows parameters to be used as HTTP URI query

parameters. This is useful when Bulk Data Collector utilizes the specific parameters that the CPE

reports for processing (e.g., logging, locating directories) without the need for the Bulk Data

Collector to parse the data being transferred.

The CPE MUST transmit the device's Manufacturer OUI, Product Class and Serial Number as

part of the URI query parameters. The data model parameters are encoded as:

¶ .DeviceInfo.ManufacturerOUI -> oui

¶ .DeviceInfo.ProductClass -> pc

¶ .DeviceInfo.SerialNumber -> sn

As such the values of the device’s OUI, Serial Number and Product Class are formatted in the

HTTP request URI as follows:

POST https://bdc.acme.com/somedirectory?oui=00256D&pc=Z&sn=Y

Configuring the URI query parameters for other parameters requires that instances of a

BulkData.Profile.{i}.HTTP.RequestURIParameter object instance be created and configured

with the requested parameters. The additional parameters are appended to the required URI

query parameters.

Using the example to add the device's current local time to the required URI parameters, the

HTTP request URI would be as follows:

POST https://bdc.acme.com/somedirectory?oui=00256D&pc=Z&sn=Y &ct=2015-11-

01T11:12:13Z by setting the following parameters using the AddObject and SetParameterValues

RPC as follows:

¶ .BulkData.Profile.1.HTTP.RequestURIParameter 1.Name ="ct"

¶ .BulkData.Profile.1.HTTP.RequestURIParameter.1.Reference

="Device.Time.CurrentLocalTime"

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 19 of 64

A.2.2 Use of HTTP Status Codes

The Bulk Data Collector uses standard HTTP status codes, defined in the HTTP specification, to

inform the CPE whether a bulk data transfer was successful. The HTTP status code will be set in

the response header by the Bulk Data Collector. For example, "200 OK" status code indicates an

upload was processed successfully, "202 Accepted" status code indicates that the request has

been accepted for processing, but the processing has not been completed, "401 Unauthorized"

status code indicates user authentication failed and a "500 Internal Server Error" status code

indicates there is an unexpected system error.

A.2.2.1 HTTP Retry Mechanism

When the CPE receives an unsuccessful HTTP status code and the HTTP retry behavior is

enabled, the CPE MUST try to redeliver the data. The retry mechanism employed for the transfer

of bulk data using HTTP uses the same algorithm as the CWMP session retry defined in Section

3.2.1.1 of TR-069 [1].

When retrying a failed transfer, the CPE MUST keep track of the number of times it has

attempted to retry a failed data transfer attempt. A CPE MUST retry a failed transfer after

waiting for an interval of time specified in Table 2. The CPE MUST choose the wait interval by

randomly selecting a number of seconds from the range given by the data transfer retry count.

When retrying a failed data transfer after an intervening reboot, the CPE MUST reset the wait

intervals it chooses from as though it were making its first data transfer retry attempt.

The wait interval range is controlled by two Parameters, the minimum wait interval and the

interval multiplier, each of which corresponds to a data model Parameter, and which are

described in the table below.
Descriptive Name Symbol

1
 Default Data Model Parameter Name

Minimum wait interval m 5 seconds .BulkData.Profile.{i}.HTTP.RetryMinimumWaitInterval

Interval multiplier k 2000 .BulkData.Profile.{i}.HTTP.RetryIntervalMultiplier

Beginning with the tenth retry attempt, the CPE MUST choose from the fixed maximum range

shown in Table 2. The CPE MUST continue to retry a failed data transfer until it is successfully

terminated or until the next reporting interval for the data transfer becomes effective. Section

A.3.3 discusses the processing of failed data transfers. Once the data is transferred successfully,

the CPE MUST reset the data transfer retry count to zero and no longer apply session retry

policy to determine when to initiate the next data transfer.

Table 2 ï Data Transfer Retry Wait Intervals
Data Transfer Retry
Count

Default Wait Interval Range
(min -max seconds)

Actual Wait Interval Range
(min -max seconds)

#1 5-10 m ï m.(k/1000)

#2 10-20 m.(k/1000) ï m.(k/1000)
2

#3 20-40 m.(k/1000)
2
 ï m.(k/1000)

3

#4 40-80 m.(k/1000)
3
 ï m.(k/1000)

4

1
 These symbols are used in Table 2 – Data Transfer Retry Wait IntervalsTable 2.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 20 of 64

Data Transfer Retry
Count

Default Wait Interval Range
(min -max seconds)

Actual Wait Interval Range
(min -max seconds)

#5 80-160 m.(k/1000)
4
 ï m.(k/1000)

5

#6 160-320 m.(k/1000)
5
 ï m.(k/1000)

6

#7 320-640 m.(k/1000)
6
 ï m.(k/1000)

7

#8 640-1280 m.(k/1000)
7
 ï m.(k/1000)

8

#9 1280-2560 m.(k/1000)
8
 ï m.(k/1000)

9

#10 and subsequent 2560-5120 m.(k/1000)
9
 ï m.(k/1000)

10

A.2.3 Use of TLS and TCP

The use of TLS to transport the HTTP Bulk Data is RECOMMENDED, although the protocol

MAY be used directly over a TCP connection instead. If TLS is not used, some aspects of

security are sacrificed. Specifically, TLS provides confidentiality and data integrity, and allows

certificate-based authentication in lieu of shared secret-based authentication.

Certain restrictions on the use of TLS and TCP are defined as follows:

¶ The CPE MUST support TLS 1.2 [21] (or a later version).

¶ If the Collection Server URL has been specified as an HTTPS URL, the CPE MUST

establish secure connections to the Collection Server, and MUST start the TLS session

negotiation with TLS 1.2 (or, if supported, a later version).

Note ï If the Collection Server does not support the version with which the CPE establishes the

connection, it might be necessary to negotiate an earlier TLS 1.x version, or even SSL 3.0. This

implies that the CPE has to support the mandatory cipher suites for all supported TLS or SSL

versions.

Note ï TLS_RSA_WITH_AES_128_CBC_SHA is the only mandatory TLS 1.2 cipher suite.

¶ The CPE SHOULD use the RFC 6066 [19] Server Name TLS extension to send the host

portion of the Collection Server URL as the server name during the TLS handshake.

¶ If TLS 1.2 (or a later version) is used, the CPE MUST authenticate the Collection Server

using the certificate provided by the Collection Server. Authentication of the Collection

Server requires that the CPE MUST validate the certificate against a root certificate. To

validate against a root certificate, the CPE MUST contain one or more trusted root

certificates that are either pre-loaded in the CPE or provided to the CPE by a secure

means outside the scope of this specification. If as a result of an HTTP redirect, the CPE

is attempting to access a Collection Server at a URL different from its pre-configured

Collection Server URL, the CPE MUST validate the Collection Server certificate using

the redirected Collection Server URL rather than the pre-configured Collection Server

URL.

¶ If the host portion of the Collection Server URL is a DNS name, this MUST be done

according to the principles of RFC 6125 [20], using the host portion of the Collection

Server URL as the reference identifier.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 21 of 64

¶ If the host portion of the Collection Server URL is an IP address, this MUST be done

by comparing the IP address against any presented identifiers that are IP addresses.

Note ï the terms "reference identifier" and "presented identifier" are defined in RFC 6125.

Note ï wildcard certificates are permitted as described in RFC 6125.

¶ A CPE capable of obtaining absolute time SHOULD wait until it has accurate absolute

time before contacting the Collection Server. If a CPE for any reason is unable to obtain

absolute time, it can contact the Collection Server without waiting for accurate absolute

time. If a CPE chooses to contact the Collection Server before it has accurate absolute

time (or if it does not support absolute time), it MUST ignore those components of the

Collection Server certificate that involve absolute time, e.g. not-valid-before and not-

valid-after certificate restrictions.

¶ Support for CPE authentication using client-side certificates is NOT RECOMMENDED.

Instead, the Collection Server SHOULD authenticate the CPE using HTTP basic or

digest authentication to establish the identity of a specific CPE.

A.3 Encoding of Bulk Data

Bulk Data that is transferred to the Bulk Data Collector from the CPE using HTTP/HTTPS is

encoded using a specified encoding type. For HTTP/HTTPS the supported encoding types are

CSV and JSON. The encoding type is sent a media type with the report format used for the

encoding. For CSV the media type is text/csv as specified in RFC 4180 [16] and for JSON the

media type is application/json as specified in RFC 7159 [17]. For example a CSV encoded

report using charset=UTF-8 would have the following Content-Type header:

Content-Type: text/csv; charset=UTF-8

The "media-type" field and "charset" parameters MUST be present in the Content-Type header.

In addition the report format that was used for encoding the report is included as a HTTP custom

header with the following format:

BBF-Report-Format: <ReportFormat>

The <ReportFormat> field is represented as a token.

For example a CSV encoded report using a ReportFormat for ParameterPerRow would have the

following BBF-Report-Format header:

BBF-Report-Format: "ParameterPerRow"

The BBF-Report-Format custom header MUST be present when transferring data to the Bulk

Data Collector from the CPE using HTTP/HTTPS.

A.3.1 Using Wildcards to Reference Object Instances in the Report

When the CPE supports the use of the Wildcard value "*" in place of instance identifiers for the

Reference parameter, then all object instances of the referenced parameter are encoded. For

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 22 of 64

example to encode the "BroadPktSent" parameter for all object instances of the MoCA Interface

object the following will be configured:

¶ .BulkData.Profile.1.Parameter.1.Name = ""

¶ .BulkData.Profile.1.Parameter.1.Reference =

"Device.MoCA.Interface.*.Stats.BroadPktSent"

A.3.2 Using Alternative Names in the Report

Alternative names can be defined for the parameter name in order to shorten the name of the

parameter. For example instead of encoding the full parameter name

"Device.MoCA.Interface.1.Stats.BroadPktSent" could be encoded with a shorter name

"BroadPktSent". This allows the encoded data to be represented using the shorter name. The

following depicts how this would be configured:

¶ .BulkData.Profile.1.Parameter.1.Name = "BroadPktSent"

.BulkData.Profile.1.Parameter.1.Reference =

"Device.MoCA.Interface.1.Stats.BroadPktSent"

In the scenario where there are multiple instances of a parameter (e.g.,

"Device.MoCA.Interface.1.Stats.BroadPktSent",

"Device.MoCA.Interface.2.Stats.BroadPktSent") in a Report, the content of the Name parameter

SHOULD be unique (e.g., BroadPktSent1, BroadPktSent2).

A.3.2.1 Using Object Instance Wildcards and Parameter Partial Paths with Alternative Names

Wildcards for Object Instances can be used in conjunction with the use of alternative names by

reflecting object hierarchy of the value of the Reference parameter in the value of the Name

parameter.

When the value of the Reference parameter uses a wildcard for an instance identifier, the value

of the Name parameter (as used in a report) MUST reflect the wild-carded instance identifiers of

the parameters being reported on. Specifically, the value of the Name parameter MUST be

appended with a period (.) and then the instance identifier. If the value of the Reference

parameter uses multiple wildcard then each wild-carded instance identifier MUST be appended

in order from left to right.

For example, for a device to report the Bytes Sent for the Associated Devices of the device's

WiFi Access Points the following would be configured:

¶ .BulkData.Profile.1.Parameter.1.Name = "WiFi_AP_Assoc_BSent"

¶ .BulkData.Profile.1.Parameter.1.Reference =

"Device.WiFi.AccessPoint.*.AssociatedDevice.*.Stats.BytesSent"

Using this configuration a device that has 2 WiFi Access Points (with instance identifiers 1 and

3) each with 2 Associated Devices (with instance identifiers 10 and 11), would contain a Report

with following parameter names: WiFi_AP_Assoc_BSent.1.10, WiFi_AP_Assoc_BSent.1.11,

WiFi_AP_Assoc_BSent.3.10, WiFi_AP_Assoc_BSent.3.11.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 23 of 64

Partial paths for parameters can also be used to report all parameters of the associated Object

Instance. When the value of the Reference parameter is a partial path, the value of the Name

parameter (as used in a report) MUST reflect the remainder of the parameter path. Specifically,

the value of Name parameter MUST be appended with a "." and then the remainder of the

parameter path.

For example, for a device to report the statistics of a WiFi associated device object instance the

following would be configured:

¶ .BulkData.Profile.1.Parameter.1.Name = " WiFi_AP1_Assoc10"

¶ .BulkData.Profile.1.Parameter.1.Reference =

"Device.WiFi.AccessPoint.1.AssociatedDevice.10.Stats."

Using the configuration the device's report would contain the following parameter names:

WiFi_AP1_Assoc10.BytesSent, WiFi_AP1_Assoc10.BytesReceived,

WiFi_AP1_Assoc10.PacketsSent, WiFi_AP1_Assoc10.PacketsReceived,

WiFi_AP1_Assoc10.ErrorsSent, WiFi_AP1_Assoc10.RetransCount,

WiFi_AP1_Assoc10.FailedRetransCount, WiFi_AP1_Assoc10.RetryCount,

WiFi_AP1_Assoc10.MultipleRetryCount.

It is also possible for the value of the Reference parameter to use both wildcards for instance

identifiers and be a partial path. For example, for device to report the statistics for the device's

WiFi associated device, the following would be configured:

¶ .BulkData.Profile.1.Parameter.1.Name = "WiFi_AP_Assoc"

¶ .BulkData.Profile.1.Parameter.1.Reference =

"Device.WiFi.AccessPoint.*.AssociatedDevice.*.Stats."

Using this configuration a device that has 1WiFi Access Point (with instance identifier 10) with

2 Associated Devices (with instance identifiers 10 and 11), would contain a Report with

following parameter names:WiFi_AP_Assoc.1.10.BytesSent,

WiFi_AP_Assoc.1.10.BytesReceived, WiFi_AP_Assoc.1.10.PacketsSent,

WiFi_AP_Assoc.1.10.PacketsReceived, WiFi_AP_Assoc.1.10.ErrorsSent,

WiFi_AP_Assoc.1.10.RetransCount, WiFi_AP_Assoc.1.10.FailedRetransCount,

WiFi_AP_Assoc.1.10.RetryCount, WiFi_AP_Assoc.1.10.MultipleRetryCount,

WiFi_AP_Assoc.1.11.BytesSent, WiFi_AP_Assoc.1.11.BytesReceived,

WiFi_AP_Assoc.1.11.PacketsSent, WiFi_AP_Assoc.1.11.PacketsReceived,

WiFi_AP_Assoc.1.11.ErrorsSent, WiFi_AP_Assoc.1.11.RetransCount,

WiFi_AP_Assoc.1.11.FailedRetransCount, WiFi_AP_Assoc.1.11.RetryCount,

WiFi_AP_Assoc.1.11.MultipleRetryCount.

A.3.3 Processing of Content for Failed Report Transmissions

When the content (report) cannot be successfully transmitted, including retries, to the data

collector, the NumberOfRetainedFailedReports parameter of the BulkData.Profile object

instance defines how the content should be disposed based on the following rules:

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 24 of 64

¶ When the value of the NumberOfRetainedFailedReports parameter is greater than 0, then

the report for the current reporting interval is appended to the list of failed reports. How

the content is appended is dependent on the type of encoding (e.g., CSV, JSON) and is

described further in corresponding encoding section.

¶ If the value of the NumberOfRetainedFailedReports parameter is -1, then the CPE will

retain as many failed reports as possible.

¶ If the value of the NumberOfRetainedFailedReports parameter is 0, then failed reports

are not to be retained for transmission in the next reporting interval.

¶ If the CPE cannot retain the number of failed reports from previous reporting intervals

while transmitting the report of the current reporting interval, then the oldest failed

reports are deleted until the CPE is able to transmit the report from the current reporting

interval.

¶ If the value BulkData.Profile object instance’s EncodingType parameter is modified any

outstanding failed reports are deleted.

A.3.4 Encoding of CSV Bulk Data

CSV Bulk Data SHOULD be encoded as per RFC 4180 [16] and MUST contain a header line

(column headers) and the media type MUST indicate the presence of the header line.

For example: Content-Type: text/csv; charset=UTF-8; header=present. The formatting of the

header line is defined in section A.2.1.

In addition, the characters used to separate fields and rows as well as identify the escape

character can be configured from the characters used in RFC-4180.

Using the HTTP example in A.2, the following configures the CPE to transfer data to the Bulk

Data Collector using CSV encoding, separating the fields with a comma and the rows with a new

line character, by setting the following parameters using the SetParameterValues RPC as

follows:

¶ .BulkData.Profile.1.EncodingType = "CSV"

¶ .BulkData.Profile.1 CSVEncoding.FieldSeparator = ","

¶ .BulkData.Profile.1.CSVEncoding.RowSeparator="
"

¶ .BulkData.Profile.1.CSVEncoding.EscapeCharacter="""

A.3.4.1 Defining the Report Layout of the Encoded Bulk Data

The layout of the data in the reports associated with the profiles allows parameters to be

formatted either as part of a column (ParameterPerColumn) or as a distinct row

(ParameterPerRow) as defined in section A.4.1. In addition, the report layout allows rows of data

to be inserted with a timestamp stating when the data is collected.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 25 of 64

Using the HTTP example in A.2, the following configures the CPE to format the data using a

parameter as a row and inserting a timestamp as the first column entry in each row using the

"Unix-Epoch" time. The information is configured by setting the following parameters using the

SetParameterValues RPC as follows:

¶ .BulkData.Profile.1.CSVEncoding.ReportFormat ="ParameterPerRow"

¶ .BulkData.Profile.1.CSVEncoding.RowTimestamp ="Unix-Epoch"

The report format of "ParameterPerRow" MUST format each parameter using the ParameterName,

ParameterValue and ParameterType in that order. The ParameterType MUST be the parameter's base data

type as described in TR-106 [2].

A.3.4.2 Layout of Content for Failed Report Transmissions

When the value of the NumberOfRetainedFailedReports parameter of the BulkData.Profile

object instance is -1 or greater than 0, then the report of the current reporting interval is appended

to the failed reports. For CSV Encoded data the content of new reporting interval is added onto

the existing content without any header data.

A.3.5 Encoding of JSON Bulk Data

Using the HTTP example in A.2, a SetParameterValues RPC is used to configure the CPE to

transfer data to the Bulk Data Collector using JSON encoding as follows:

¶ .BulkData.Profile.1.EncodingType = "JSON"

A.3.5.1 Defining the Report Layout of the Encoded Bulk Data

Reports that are encoded with JSON Bulk Data are able to utilize different report format(s)

defined by the JSONEncoding object’s ReportFormat parameter as defined in section A.4.2.

In addition, a "CollectionTime" JSON object can be inserted into the report instance that defines

when the data for the report was collected.

The following configures the CPE to encode the data using a parameter as JSON Object named

"CollectionTime" using the "Unix-Epoch" time format using the SetParameterValues RPC as

follows:

¶ .BulkData.Profile.1.JSONEncoding.ReportTimestamp ="Unix-Epoch"

Note: The encoding format of "CollectionTime" is defined as an JSON Object parameter encoded as:

" CollectionTime" :1364529149

Reports are defined as an Array of Report instances encoded as:

 " Report" :[{...},{...}]

Note: Multiple instances of Report instances may exist when previous reports have failed to be

transmitted.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 26 of 64

A.3.5.2 Layout of Content for Failed Report Transmissions

When the value of the NumberOfRetainedFailedReports parameter of the BulkData.Profile

object instance is -1 or greater than 0, then the report of the current reporting interval is appended

to the failed reports. For JSON Encoded data the report for the current reporting interval is added

onto the existing appended as a new "Data" object array instance as shown below:

Reports are defined as an Array of Report instances encoded as:

" Report" : [

{Report from a failed reporting interval },

{Report from the current reporting interval}

]

A.3.5.3 Using the ObjectHierarchy Report Format

When a BulkData profile utilizes the JSON encoding type and has a

JSONEncoding.ReportFormat parameter value of "ObjectHierarchy", then the JSON objects are

encoded such that each object in the object hierarchy of the data model is encoded as a

corresponding hierarchy of JSON Objects with the parameters (i.e., parameterName,

parameterValue) of the object specified as name/value pairs of the JSON Object.

For example the translation for the leaf object "Device.MoCA.Interface.*.Stats." would be:

{

 " Report" : [

 {

 " Device" : {

 " MoCA" : {

 " Interface" : {

 " 1" : {

 " Stats" : {

 " BroadPktSent" : 25248,

 " BytesReceived" : 200543250,

 " BytesSent" : 25248,

 " MultiPkt Received" : 200543250

 }

 },

 " 2" : {

 " Stats" : {

 " BroadPktSent" : 93247,

 " BytesReceived" : 900543250,

 " BytesSent" : 93247,

 " MultiPkt Received" : 900543250

 }

 }

 }

 }

 }

 }

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 27 of 64

]

}

Note: The translated JSON Object name does not contain the trailing period "." of the leaf object.

A.3.5.4 Using the NameValuePair Report Format

When a BulkData profile utilizes the JSON encoding type and has a

JSONEncoding.ReportFormat parameter value of "NameValuePair", then the JSON objects are

encoded such that each parameter of the data model is encoded as an array instance with the

parameterName representing JSON name token and parameterValue as the JSON value token.

For example the translation for the leaf object "Device.MoCA.Interface.*.Stats." would be:

{

 " Report" : [

 {

 " Device.MoCA.Interface.1.Stats.BroadPktSent" : 25248,

 " Device.MoCA.Interface.1.Stats.BytesReceived" : 200543250,

 " Device.MoCA.Interface.1.Stats.BytesSent" : 25248,

 " Device.MoCA.Interface.1.Stats.MultiPktReceived" : 200543250,

 " Device.MoCA.Interface.2.Stats.BroadPktSent" : 93247,

 " Device.MoCA.Interface.2.Stats.BytesReceived" : 900543250,

 " Device.MoCA.Interface.2.Stats.BytesSent" : 93247,

 " Device.MoCA.Interface.2.Stats.MultiPktReceived" : 900543250

 }

]

}

Note: The translated JSON Object name does not contain the trailing period "." of the leaf object.

A.3.5.5 Translating Data Types

JSON has a number of basic data types that are translated from the base data types defined in

TR-106 [2]. The encoding of JSON Data Types MUST adhere to RFC 7159 [17].

TR-106 named data types are translated into the underlying base TR-106 data types.

Lists based on TR-106 base data types utilize the JSON String data type.

Table 3 ï TR-106 Data Type Translation - JSON

TR-106 Data Type JSON Data Type

base64 String: base64 representation of the binary data.

boolean Boolean

dateTime String represented as an ISO-8601 timestamp.

hexBinary String: hex representation of the binary data.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 28 of 64

TR-106 Data Type JSON Data Type

int, long, unsignedInt,

unsignedLong
Number

string String

A.4 Report Examples

This section provides example report configurations along with the examples of how the

resulting encoded data would look as it is transferred to the Bulk Data Collector.

A.4.1 CSV Encoded Report Examples

A.4.1.1 CSV Encoded Reporting Using ParameterPerRow Report Format

Using the configuration examples provided in the previous sections the configuration for a CSV

encoded HTTP report using the ParameterPerRow report format:

¶ .BulkData.Profile.1

¶ .BulkData.Profile.1.Enable=true

¶ .BulkData.Profile.1.Protocol = "HTTP"

¶ .BulkData.Profile.1.ReportingInterval = 300

¶ .BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

¶ .BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"

¶ .BulkData.Profile.1.HTTP.Username = "username"

¶ .BulkData.Profile.1.HTTP.Password = "password"

¶ .BulkData.Profile.1.HTTP.Compression = "Disabled"

¶ .BulkData.Profile.1.HTTP.Method = "POST"

¶ .BulkData.Profile.1.HTTP.UseDateHeader = true

¶ .BulkData.Profile.1.EncodingType = "CSV"

¶ .BulkData.Profile.1 CSVEncoding.FieldSeparator = ","

¶ .BulkData.Profile.1.CSVEncoding.RowSeparator="
"

¶ .BulkData.Profile.1.CSVEncoding.EscapeCharacter="""

¶ .BulkData.Profile.1.CSVEncoding.ReportFormat ="ParameterPerRow"

¶ .BulkData.Profile.1.CSVEncoding.ReportTimestamp ="Unix-Epoch"

¶ .BulkData.Profile.1.Parameter.1.Name = ""

¶ .BulkData.Profile.1.Parameter.1.Reference =

"Device.MoCA.Interface.1.Stats.BroadPktSent"

¶ .BulkData.Profile.1.Parameter.2.Name = ""

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 29 of 64

¶ .BulkData.Profile.1.Parameter.2.Reference =

"Device.MoCA.Interface.1.Stats.BytesReceived"

¶ .BulkData.Profile.1.Parameter.3.Name = ""

¶ .BulkData.Profile.1.Parameter.3.Reference =

"Device.MoCA.Interface.1.Stats.BytesSent"

¶ .BulkData.Profile.1.Parameter.4.Name = ""

¶ .BulkData.Profile.1.Parameter.4.Reference =

"Device.MoCA.Interface.1.Stats.MultiPktReceived"

The resulting CSV encoded data would look like:

ReportTimestamp,ParameterName,ParameterValue,ParameterType

1364529149,Device.MoCA.Interface.1.Stats.BroadPktSent,25248,unsignedLong

1364529149,Device.MoCA.Interface.1.Stats.BytesReceived,200543250,unsignedLong

1364529149, Device.MoCA.Interface.1.Stats.Stats.BytesSent,7682161,unsignedLong

1364529149,Device.MoCA.Interface.1.Stats.MultiPktReceived,890682272,unsignedLong

A.4.1.2 CSV Encoded Reporting Using ParameterPerColumn Report Format

Using the configuration examples provided in the previous sections the configuration for a CSV

encoded HTTP report using the ParameterPerColumn report format:

¶ .BulkData.Profile.1

¶ .BulkData.Profile.1.Enable=true

¶ .BulkData.Profile.1.Protocol = "HTTP"

¶ .BulkData.Profile.1.ReportingInterval = 300

¶ .BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

¶ .BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"

¶ .BulkData.Profile.1.HTTP.Username = "username"

¶ .BulkData.Profile.1.HTTP.Password = "password"

¶ .BulkData.Profile.1.HTTP.Compression = "Disabled"

¶ .BulkData.Profile.1.HTTP.Method = "POST"

¶ .BulkData.Profile.1.HTTP.UseDateHeader = true

¶ .BulkData.Profile.1.EncodingType = "CSV"

¶ .BulkData.Profile.1 CSVEncoding.FieldSeparator = ","

¶ .BulkData.Profile.1.CSVEncoding.RowSeparator="
"

¶ .BulkData.Profile.1.CSVEncoding.EscapeCharacter="""

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 30 of 64

¶ .BulkData.Profile.1.CSVEncoding.ReportFormat ="ParameterPerColumn"

¶ .BulkData.Profile.1.CSVEncoding.ReportTimestamp ="Unix-Epoch"

¶ .BulkData.Profile.1.Parameter.1.Name = "BroadPktSent"

¶ .BulkData.Profile.1.Parameter.1.Reference =

"Device.MoCA.Interface.1.Stats.BroadPktSent"

¶ .BulkData.Profile.1.Parameter.2.Name = "BytesReceived"

¶ .BulkData.Profile.1.Parameter.2.Reference =

"Device.MoCA.Interface.1.Stats.BytesReceived"

¶ .BulkData.Profile.1.Parameter.3.Name = "BytesSent"

¶ .BulkData.Profile.1.Parameter.3.Reference =

"Device.MoCA.Interface.1.Stats.BytesSent"

¶ .BulkData.Profile.1.Parameter.4.Name = "MultiPktReceived"

¶ .BulkData.Profile.1.Parameter.4.Reference =

"Device.MoCA.Interface.1.Stats.MultiPktReceived"

The resulting CSV encoded data with transmission of the last 3 reports failed to complete would

look like:

ReportTimestamp,BroadPktSent,BytesReceived,BytesSent,MultiPktReceived

1364529149,25248,200543250,7682161,890682272

1464639150,25249,200553250,7683161,900683272

1564749151,25255,200559350,7684133,910682272

1664859152,25252,200653267,7685167,9705982277

A.4.2 JSON Encoded Report Example

Using the configuration examples provided in the previous sections the configuration for a JSON

encoded HTTP report:

¶ .BulkData.Profile.1

¶ .BulkData.Profile.1.Enable=true

¶ .BulkData.Profile.1.Protocol = "HTTP"

¶ .BulkData.Profile.1.ReportingInterval = 300

¶ .BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

¶ .BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"

¶ .BulkData.Profile.1.HTTP.Username = "username"

¶ .BulkData.Profile.1.HTTP.Password = "password"

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 31 of 64

¶ .BulkData.Profile.1.HTTP.Compression = "Disabled"

¶ .BulkData.Profile.1.HTTP.Method = "POST"

¶ .BulkData.Profile.1.HTTP.UseDateHeader = true

¶ .BulkData.Profile.1.EncodingType = "JSON"

¶ .BulkData.Profile.1.JSONEncoding.ReportFormat ="ObjectHierarchy"

¶ .BulkData.Profile.1.JSONEncoding.ReportTimestamp ="Unix-Epoch"

¶ .BulkData.Profile.1.Parameter.1.Reference = "Device.MoCA.Interface.*.Stats."

The resulting JSON encoded data would look like:

{

 " Report" : [

 {

 " CollectionTime" : 1364529149,

 " Device" : {

 " MoCA" : {

 " Interface" : {

 " 1" : {

 " Stats" : {

 " BroadPktSent" : 25248,

 " BytesReceived" : 200543250,

 " BytesSent" : 25248,

 " MultiPkt Received" : 200543250

 }

 },

 " 2" : {

 " Stats" : {

 " BroadPktSent" : 93247,

 " BytesReceived" : 900543250,

 " BytesSent" : 93247,

 " MultiPkt Received" : 900543250

 }

 }

 }

 }

 }

 }

]

}

Note: All supported parameters for the "Device.MoCA.Interface.*.Stats." object would be

encoded based on the .BulkData.Profile.1.Parameter.1.Reference =

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 32 of 64

"Device.MoCA.Interface.*.Stats." selection. This example just depicts 4 of the parameters of the

referenced object.

If the value of the .BulkData.Profile.1.JSONEncoding.ReportFormat parameter was

"NameValuePair", the results of the configuration are:

{

 " Report" : [

 {

 " CollectionTime" : 1364529149,

 " Device.MoCA.Interface.1.Stats.BroadPktSent" : 25248,

 " Device.MoCA.Interface.1.Stats.BytesReceived" : 200543250,

 " Device.MoCA.Interface.1.Stats.BytesSent" : 25248,

 " Device.MoCA.Interface.1.Stats.MultiPkt Received" : 200543250,

 " Device.MoCA.Interface.2.Stats.BroadPktSent" : 93247,

 " Device.MoCA.Interface.2.Stats.BytesReceived" : 900543250,

 " Device.MoCA.Interface.2.Stats.BytesSent" : 93247,

 " Device.MoCA.Interface.2.Stats.MultiPktReceived" : 900543250

 }

]

}

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 33 of 64

Appendix I. USB Host Theory of
Operation

I.1 Overview

An increasing number of devices are equipped with a USB Host controller and USB host

interface(s) / connector(s) (series A receptacle).

There are a number of use cases for adding a USB Host and connected devices to a CWMP data

model. One example is retrieving the exact product identity of the connected device in the event

of service issues such as printer or file sharing problems. Another example is notifying the user

that a newly-connected device is not supported, e.g. due to a missing driver. Or the detection of

the connection of a particular USB device could mean additional services for this device could

be offered to the subscriber.

The data model contains the number of devices connected to each host controller. For each

device, the main properties of the USB device descriptors as well as interface descriptors are

represented. The latter is to support devices that only indicate class/subclass (and therefore

device type) at the interface level.

Example USB topology of connected devices:

Figure 1 - Example USB Host Connections

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 34 of 64

All USB devices attach to a USB Host through a port on a USB entity known as a hub. Hubs

have status bits that are used to report the attachment or removal of a USB device on one of its

ports. The USB Host queries the hub to retrieve these status bits. In the case of an attachment,

the USB Host enables the port and addresses the USB device through the device’s control pipe at

the default address. Figure 1 depicts both a Root Hub and an External Hub that provide this

service.

The USB Host assigns a unique USB address to the device and then determines if the newly

attached USB device is a hub or function. The USB Host establishes its end of the control pipe

for the USB using the assigned USB address and endpoint number zero. This is reflected in the

data model by adding a new USBHosts.Host.{i}.Device.{i}. instance.

If the attached USB device is a hub and USB devices are attached to its ports, then the above

procedure is followed for each of the attached USB devices.

If the attached USB device is a function, then attachment notifications will be handled by the

USB Host software that is appropriate for the function.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 35 of 64

Appendix II. Software Module
Management

This section discusses the Theory of Operation for Software Module Management using TR-069

[1] and the Software Module object defined in the Root data model.

II.1 Overview

As the home networking market matures, CPE in the home are becoming more sophisticated and

more complex. One trend in enhanced device functionality is the move towards more

standardized platforms and execution environments (such as Java, Linux, OSGi, etc.). Devices

implementing these more robust platforms are often capable of downloading new applications

dynamically, perhaps even from third-party software providers. These new applications might

enhance the existing capabilities of the device or enable the offering of new services to the

subscriber.

This model differs from previous CPE software architectures that assumed one monolithic

firmware that was downloaded and applied to the device in one action.

That sophistication is a double-edged sword for service providers. On one hand, these devices

are able to offer new services to subscribers and therefore increase the revenue per subscriber,

help operators differentiate, and reduce churn with "sticky" applications that maintain subscriber

interest. On the other hand, the increased complexity creates more opportunities for problems,

especially as the users of these home-networking services cease to be early adopters and move

into the mainstream. It is important that the increased revenue opportunity is not offset with

growing activation and support costs.

In order to address the need of providing more compelling dynamic applications on the CPE

while ensuring a smooth "plug and play" user experience, it is necessary for service providers to

make use of CMWP to remotely manage the life cycle of these applications, including install,

activation, configuration, upgrade, and removal. Doing so ensures a positive user experience,

improves service time-to-market, and reduces operational costs related with provisioning,

support, and maintenance.

II.2 Lifecycle Management

There are a number of actions that service providers might want to take in managing the lifecycle

of these dynamic applications. They might want to install new applications for the subscriber.

They might want to update existing applications when new versions or patches are available.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 36 of 64

They might want to start and/or stop these applications as well. Finally, they might want to

uninstall applications that are no longer needed (or perhaps paid for) by the subscriber.

The specifics of how applications run in different environments vary from platform to platform.

In order to avoid lifecycle management tailored to each specific operating environment, CWMP-

based software management defines abstract state models and abstract software module concepts

as described in the following sections. These concepts are not tied to any particular platform and

enable CWMP to manage dynamic software on a wide range of devices in a wide range of

environments.

II.3 Software Modules

A Software Module is any software entity that will be installed on a CPE. This includes

modules that can be installed/uninstalled and those that can be started and stopped. All software

on the device is considered a software module, with the exception of the primary firmware,

which plays a different enough role that it is considered a separate entity.

A software module exists on an Execution Environment (EE), which is a software platform that

supports the dynamic loading and unloading of modules. It might also enable the dynamic

sharing of resources among entities, but this differs across various execution environments.

Typical examples include Linux, OSGi, .NET, Android, and Java ME. It is also likely that these

environments could be "layered," i.e., that there could be one primary environment such as Linux

on which one or more OSGi frameworks are stacked. This is an implementation specific

decision, however, and CWMP-based module management does not attempt to enable

management of this layering beyond exposing which EE a given environment is layered on top

of (if any). CWMP-based Software Module Management also does not attempt to address the

management of the primary firmware image, which is expected to be managed via the Download

mechanism previously defined in TR-069.

Software modules come in two types: Deployment Units (DUs) and Execution Units (EUs). A

DU is an entity that can be deployed on the EE. It can consist of resources such as functional

EUs, configuration files, or other resources. Fundamentally it is an entity that can be Installed,

Updated, or Uninstalled. Each DU can contain zero or more EUs but the EUs contained within

that DU cannot span across EEs. An EU is an entity deployed by a DU, such as services, scripts,

software components, or libraries. The EU initiates processes to perform tasks or provide

services. Fundamentally it is an entity that can be Started or Stopped. EUs also expose

configuration for the services implemented, either via standard TR-069 related data model

objects and parameters or via EU specific objects and parameters.

It is possible that Software Modules can have dependencies on each other. For example a DU

could contain an EU that another DU depends on for functioning. If all the resources on which a

DU depends are present and available on an EE, it is said to be Resolved. Otherwise the EUs

associated with that DU might not be able to function as designed. It is outside the scope of

Software Module Management to expose these dependencies outside of indicating whether a

particular DU is RESOLVED or not.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 37 of 64

II.3.1 Deployment Units

Below is the state machine diagram
2
 for the lifecycle of DUs.

Figure 2 ï Deployment Unit State Diagram

This state machine shows 5 individual states (3 of which are transitory) and 3 explicitly triggered

state transitions.

The explicit transitions among the non-transitory states are triggered by a CMWP method call,

ChangeDUState, defined in Section A.4.1.10 / TR-069 [1]. The explicit transitions are as

follows:

1. Install, which initiates the process of Installing a DU. The device might need to transfer a

file from the location indicated by a URL in the method call. Once the resources are

available on the device, the CPE begins the installation process:

¶ In the Installing state, the DU is in the process of being Installed and will transition to

that state unless prevented by a fault. Note that the ACS has the option to choose

which EE to install a particular DU to, although it can also leave that choice up to the

CPE. If the ACS does specify the EE, it is up to the ACS to specify one that is

2
 This state machine diagram refers to the successful transitions caused by the ChangeDUState RPC and does not

model the error cases.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 38 of 64

compatible with the DU it is attempting to Install (e.g., an OSGi framework for an

OSGi bundle).

¶ In the Installed state, the DU has been successfully downloaded and installed on the

relevant EE. At this point it might or might not be Resolved. If it is Resolved, the

associated EUs can be started; otherwise an attempt to start the associated EUs will

result in a failure. How dependencies are resolved is implementation and EE

dependent.

2. Update, which initiates a process to update a previously existing DU. As with Install, the

device might need to transfer a file from the location indicated by a URL in the method

call. If no URL is provided in the request, the CPE uses the last URL stored in the

DeploymentUnit table (including any related authentication credentials) used from either

Install or a previous Update. There are four combinations of URL and UUID being

supplied in the request; for details, see Section A.4.1.10 in TR-069 [1]. Once the

resources are available on the device, the CPE begins the updating process:

¶ In the Updating state, the DU is in the process of being Updated and will transition to

the Installed state. As with initial installation, the DU might or might not have

dependencies Resolved at this time.

¶ During the Updating state, the associated EUs that had been in the Active state

transition to Idle during the duration of the Update. They are automatically restarted

once the Update process is complete.

Note that an Update is performed on the underlying resource(s) across all EEs with which

the DU is associated. Each affected DU instance, however, has its own result entry in the

DUStateChangeComplete method.

3. Uninstall, which initiates the process of uninstalling the DU and removing the resources

from the device. It is possible that a DU to be Uninstalled could have been providing

shared dependencies to another DU; it is possible therefore that the state of other DUs

and/or EUs could be affected by the DU being Uninstalled.

¶ In the Uninstalling state, the DU is in the process of being Uninstalled and will

transition to that state unless prevented by a fault.

¶ In the Uninstalled state, the DU is no longer available as a resource on the device.

Garbage clean up of the actual resources are EE and implementation dependent. In

many cases, the resource(s) will be removed automatically at the time of un-

installation. The removal of any associated EUs is part of DU clean up.

The ChangeDUState method can contain any combination of requested operations over

independent multiple DUs. Because the CPE is allowed to apply the operations in any order of

its choosing (even though it needs to report the results in the order received in the request) the

ACS cannot depend on operations being deployed in a specific order to a given DU; this means

that if an ACS wants to perform ordered operations on a specific DU, it needs to do so in

multiple method calls. CPE are required to accept at least 16 operations in a method call; there is

no theoretical upper bound on the number of operations that can be triggered in a single

ChangeDUState method, but it is limited by the resources and capabilities of the device itself.

The ChangeDUState method is an asynchronous request, meaning that, except in cases where the

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 39 of 64

request fails, the CPE notifies the ACS in a subsequent CWMP session about the success or

failure of the state transitions requested using a DUStateChangeComplete ACS method (see

below for more information on fault scenarios).

These state transitions might also be triggered via means other than CWMP (e.g. user-triggered

or CPE-triggered). Since the ACS might still be interested in knowing about these autonomous

state changes there is also an ACS method, called AutonomousDUStateChangeComplete, for

this purpose. The ACS can filter the notifications it receives via this mechanism using the

parameters defined in the ManagementServer.DUStateChangeComplPolicy object.

The inventory of available DUs along with their current state can be found in the

SoftwareModules component found in the Root data model, i.e., the

SoftwareModules.DeploymentUnit.{i} object. This object contains a list of all the DUs currently

on the device, along with pertinent information such as DU identifiers, current state, whether the

DU is Resolved, information about the DU itself such as vendor and version, the list of

associated EUs, and the EEs on which the particular DU is installed.

DUs have a number of identifiers, each contributed by a different actor in the ecosystem:

¶ A Universally Unique Identifier (UUID) either assigned by the management server

(ACS) or generated by the CPE at the time of Installation. . This identifier gives the

management server a means to uniquely identify a particular DU across the population of

devices on which it is installed. A DU will, therefore, have the same UUID on different

devices, but there can be no more than one DU with the same UUID and version installed

to an EE on a particular device. See II.3.1.1 below for more information on UUID

generation.

¶ A Deployment Unit Identifier (DUID) assigned by the EE on which it is deployed; this

identifier is specific to the particular EE, and different EEs might have different logic for

the assigning of this value.

¶ A Name assigned by the author of the DU.

The creation of a particular DU instance in the data model occurs during the Installation process.

It is at this time that the DUID is assigned by the EE. Upon Uninstall, the data model instance

will be removed from the DU table once the resource itself has been removed from the device.

Since garbage clean up is EE and implementation dependent, it is therefore possible that a

particular DU might never appear in the data model in the Uninstalled state but rather disappear

at the time of the state transition. It is also possible that an event, such as a Reboot, could be

necessary before the associated resources are removed.

II.3.1.1 UUID Generation

An important aspect of the UUID is that it might be generated by either the ACS and provided to

the CPE as part of the Install operation, or generated by the CPE either if the ACS does not

provide a UUID in the Install operation or if the DU is Installed outside CWMP-based

management, such as at the factory or via a LAN-side mechanism (e.g. UPnP DM). Because the

UUID is meant to uniquely identify a DU across a population of devices, it is important that the

UUID be the same whether generated by the ACS or the CPE. In order to ensure this, the UUID

is generated (whether by ACS or CPE) according to the rules defined by RFC 4122 [7] Version 3

(Name-Based) and Annex H / TR-069 [1]. The following are some possible scenarios:

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 40 of 64

1. The DU is Installed via CWMP with an ACS generated UUID and is subsequently

Updated/Uninstalled via CWMP. All post-Install management actions require the UUID

to address the DU, which is retained across version changes.

2. The DU is factory Installed with a CPE generated UUID and is subsequently

Updated/Uninstalled via CWMP. In this case the ACS can either choose to generate this

UUID if it has access to the information necessary to create it or to learn the UUID by

interrogating the data model.

3. The DU is Installed via CWMP with an ACS generated UUID and is subsequently

Updated/Uninstalled via a LAN-side mechanism. In this scenario it is possible that the

LAN-side mechanism is unaware of the UUID and uses its own protocol-specific

mechanism to identify and address the DU. The UUID, however, is still retained across

version changes. If AutonomousDUStateChangeComplete notifications are enabled for

the device, the CPE also sends that method (containing the UUID) to the ACS once the

LAN-side triggered state change has completed.

4. The DU is Installed via CWMP but the ACS provides no UUID in the Install operation.

In this case the CPE generates the UUID, which must be used by the ACS in any future

CWMP-based Updates or Uninstalls. Depending on its implementation, the ACS might

choose to generate the UUID at the time of the future operations, learn the value of the

UUID from the DUStateChangeComplete RPC, or learn it by interrogating the data

model.

5. The DU is Installed via a LAN-side mechanism and is subsequently Updated/Uninstalled

via CWMP. Since it is likely that the LAN-side mechanism does not provide a Version 3

Name-Based UUID in its protocol-specific Install operation, it is expected that the CPE

generates the UUID in this case when it creates the DU instance in the data model.

Depending on its implementation, the ACS might choose to generate the UUID for later

operations if it has access to the information necessary to create it, learn the UUID from

the AutonomousDUStateChangeComplete RPC (if this notification mechanism is

enabled), or learn it by interrogating the data model.

II.3.2 Execution Units

Below is the state machine diagram
3
 for the lifecycle of EUs.

3
 This state machine diagram refers to the successful transitions caused by the RequestedState Parameters within the

ExecutionUnit table and does not model the error cases.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 41 of 64

Figure 3 ï Execution Unit State Diagram

This state machine shows 4 states (2 of them transitory) and two explicitly triggered state

transitions.

The state transitions between the non-transitory states are triggered using the

SetParameterValues method call as defined in Section A.3.2.1 / TR-069 [1] and the

SoftwareModules.ExecutionUnit.{i}.RequestedState parameter as defined in the

SoftwareModules object in the Root data model. The explicit transitions are as follows:

1. In order to Start an EU, the ACS sets the value of the RequestedState parameter to

Active. The EU enters the Starting state, during which it takes any necessary steps to

move to the Active state, and it will transition to that state unless prevented by a fault.

Note that an EU can only be successfully started if the DU with which it is associated has

all dependencies Resolved. If this is not the case, then the EU’s status remains as Idle,

and the ExecutionFaultCode and ExecutionFaultMessage parameters are updated

appropriately.

2. In order to Stop an EU, the ACS sets the value of the RequestedState parameter to Idle.

The EU enters the Stopping state, during which it takes any necessary steps to move to

the Idle state, and then transitions to that state.

It is also possible that the EU could transition to the Active or Idle state without being explicitly

instructed to do so by the ACS (e.g., if the EU is allowed to AutoStart, in combination with the

run level mechanism, or if operation of the EU is disrupted because of a later dependency error).

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 42 of 64

The ACS manages being notified of these autonomous state changes via Active Notification on

the SoftwareModules.ExecutionUnit.{i}.Status parameter. Note that this parameter is defined as

having Active Notification enabled by default.

The inventory of available EUs along with their current state can be found in the

SoftwareModules component found in the Root data model; i.e., the

SoftwareModules.ExecutionUnit.{i} object. This object contains a list of all the EUs currently

on the device along with accompanying status and any current errors as well as resource

utilization related to the EU, including memory and disk space in use.

EUs have a number of identifiers, each contributed by a different actor in the ecosystem:

¶ An Execution Unit Identifier (EUID) assigned by the EE on which it is deployed; this

identifier is specific to the particular EE, and different EEs might have different logic for

assigning this value. There can be only one EU with a particular EUID.

¶ A Name provided by the developer and specific to the associated DU.

¶ A Label assigned by the EE; this is a locally defined name for the EU.

The creation of a particular EU instance in the data model occurs during the Installation process

of the associated DU. It is at this time that the EUID is assigned by the EE as well. The

configuration exposed by a particular EU is available from the time the EU is created in the data

model, whether or not the EU is Active. Upon Uninstall of the associated DU, it is expected that

the EU would transition to the Idle State, and the data model instance would be removed from

the EU table once the associated resources had been removed from the device. Garbage clean

up, however, is EE and implementation dependent.

Although the majority of EUs represent resources such as scripts that can be started or stopped,

there are some inert resources, such as libraries, which are represented as EUs. In this case,

these EUs behave with respect to the management interface as a "regular" EU. In other words,

they respond successfully to Stop and Start commands, even though they have no operational

meaning and update the SoftwareModules.ExecutionUnit.{i}.Status parameter accordingly. In

most cases the Status would not be expected to transition to another state on its own, except in

cases where its associated DU is Updated or Uninstalled or its associated EE is Enabled or

Disabled, in which cases the library EU acts as any other EU.

The EUs created by the Installation of a particular DU might provide functionality to the CPE

that requires configuration by the ACS. This configuration could be exposed via the CWMP

data model in five ways:

1. Service data model (if, for example, the EU provides VoIP functionality, configuration

would be exposed via the Voice Service data model defined in TR-104 [6]).

2. Standard objects and parameters in the device’s root data model (if, for example, the EU
provides port mapping capability, the configuration would be exposed via the port

mapping table defined in TR-098 [5] or TR-181 Issue 2 [4]).

3. Instances of standard objects in the Root or any Service data model, (if, for example, the

EU provides support for an additional Codec in a VoIP service).

4. Vendor extension objects and parameters that enhance and extend the capabilities of

standard objects (if, for example, the EU provides enhanced UserInterface capabilities)

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 43 of 64

5. Standalone vendor extension objects that are directly controlled objects of the EU (for

example, a new vendor specific object providing configuration for a movies on demand

service).

In the case of 1 or 3, the References parameter in the EU object provides a list of path names to

the services and multi-instance objects that are the directly controlled objects of the EU and

which came into existence because of this particular EU. In the case of 5, the Extensions sub-

object within the EU object provides a place to place these vendor extensions to allow multiple

EUs to expose parameters without concern of conflicting parameter names. In the case of 2 or 4,

these can be discovered using the SupportedDataModelList parameter and its links to the Current

Data Model table as discussed below or through interrogation of the data model using the

GetParameterNames RPC.

The creation of these additional data model objects and parameters means that the Current

Supported Data Model of the device is also updated. The EU object contains a parameter that is

a path reference to an instance in the SupportedDataModel table in the root data model so that

the ACS can retrieve the DT file associated with the EU in order to discover its manageable

characteristics.

All data model services, objects, and parameters related to a particular EU come into existence at

the time of Installation or Update of the related DU, The related data model disappears from the

device’s data model tree at the time of Uninstall and clean up of the related DU resources. It is

possible that the device could encounter errors during the process of discovering and creating

EUs; if this happens, it is not expected that the device would roll back any data model it has

created up until this point but would rather set the

ExecutionFaultCode of the EU to "Unstartable." In this case, it is not expected that any faults

(with the exception of System Resources Exceeded) would have been generated in response to

the Install or Update operation. See below for more information on EU faults.

The configuration of EUs could be backed up and restored using vendor configuration files. The

EU object in the data model contains a parameter, which is a path reference to an instance in the

vendor config file table in the Root data model. This path reference indicates the vendor config

file associated with the configuration of the particular EU. Retrieval and downloading of vendor

config files occurs via the Upload and Download methods defined in TR-069 [1], just as with

any config files.

It is also possible that applications could have dedicated log files. The EU object also contains a

parameter, which is a path reference to an instance in the log file table in the root data model.

This path reference indicates the log file associated with a particular EU. Retrieval of log files is

accomplished using the Upload method as defined in TR-069 [1].

II.3.3 Example Sequence Diagrams

The following diagrams provide an example sequence for the deployment of a new Software

Module, including the installation of the DU and the configuration and starting of an EU.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 44 of 64

CPEACS

InformResponse

Empty

Empty

ChangeDUState (InstallOp[URL, EE]..., CmdKey=Y)

ChangeDUStateResponse

Connection Request

HTTP 204

Inform (CONN_REQ)

File Server

HTTP GET

HTTP 200

Create DU
Instance in
Data Model

Resolve DU

Install DU

Create EU
Instances in
Data Model

Figure 4 ï Installation of a Deployment Unit - CWMP Session #1

In this first CWMP Session we see the ACS requesting an Installation of a specific Deployment

Unit by providing a URL in the ChangeDUState RPC. The CPE will retrieve the file, create the

Deployment Unit instance, install the Deployment Unit, create any Execution Unit instances, and

finally attempt to resolve any Deployment Unit dependencies.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 45 of 64

CPEACS

Inform (11 DU STATE CHANGE COMPLETE, M ChangeDUState [CmdKey=Y])

InformResponse

DUStateChangeComplete (..., CurrState=Installed, CmdKey=Y, ...)

DUStateChangeCompleteResponse

Empty

Empty

GetParameterValues (EU References, SupportedDataModel Table)

GetParameterValuesResponse

SetParameterValues (Conýgure and Activate the EUs)

SetParameterValuesResponse

Figure 5 ï Configuring and Starting the Execution Units - CWMP Session #2

In this second CWMP Session we see the CPE informing the ACS that the Deployment Unit has

been successfully installed. At this point the ACS queries the Execution Unit instances that were

reported back in the DUStateChangeComplete RPC so the ACS can determine what needs to be

configured before activating the Execution Units. The ACS then configures the Execution Unit

instances and activates them, using the RequestedState parameter with a value of "Active",

within the same SetParameterValues RPC.

II.4 Execution Environment Concepts

As discussed above, an EE is a software platform that supports the dynamic loading and

unloading of modules. A given device can have multiple EEs of various types and these EEs can

be layered on top of each other. The following diagram gives a possible implementation of

multiple EEs.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 46 of 64

Figure 6 ï Possible Multi-Execution Environment Implementation

In this example, the device exposes its Linux Operating System as an EE and has two different

OSGi frameworks layered on top of it, all of which are modeled as separate ExecEnv object

instances. In order to indicate the layering to the ACS, the two OSGi framework objects

(.ExecEnv.2 and .ExecEnv.3) would populate the Exec.Env.{i}.Parent parameter with a path

reference to the Linux object (.ExecEnv.1). The Linux EE object would populate that parameter

with an empty string to indicate that it is not layered on top of any managed EE.

Multiple versions of a DU can be installed within a single EE instance, but there can only be one

instance of a given version at a time. In the above diagram, there are two versions of DU1, v1.0

and v1.2 installed on .ExecEnv.2. If an attempt is made to update DU1 to version 1.2, or to

install another DU with version 1.0 or 1.2, on ExecEnv.2, the operation will fail.

A DU can also be installed to multiple EEs. In the above example, DU1 is installed both to

ExecEnv.2 and ExecEnv.3. The Installation is accomplished by having two different Install

Actions in the ChangeDUState method call; note that it is possible for an Install to be successful

on one EE and not the other or for the DU to be Resolved on one EE and not the other in this

case.

When DUs are Updated, the DU instances on all EEs are affected. For example, in the above

diagram, if DU1 v.1.0 is updated to version 2.0, the instances on both .ExecEnv.2 and

.ExecEnv.3 will update to version 2.0.

For Uninstall, an ACS can either indicate the specific EE from which the DU should be removed,

or not indicate a specific EE, in which case the DU is removed from all EEs.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 47 of 64

An EE can be enabled and disabled by the ACS. Reboot of an EE is accomplished by first

disabling and then later enabling the EE. When an EE instance is disabled by the ACS, the EE

itself shuts down. Additionally, any EUs associated with the EE automatically transition to

Stopped and the ExecutionFaultCode parameter value is "Unstartable." The state of the

associated DUs remains the same. If a ChangeDUState method is attempted on any of the DUs

associated with a disabled EE, the operation fails and an error is returned in the fault struct of the

DUStateChangeComplete RPC. If an attempt is made to Start an EU associated with a Disabled

EE, the device returns a CWMP fault that contains a SetParameterValues fault element for

RequestedState. It should be noted if the Operating System of the device is exposed as an EE,

disabling it could result in the device being put into a non-operational and non-manageable state.

It should also be noted that disabling the EE on which the CWMP Management agent resides can

result in the device becoming unmanageable via TR-069.

Note that the above is merely an example; whether a device supports multiple frameworks of the

same type and whether it exposes its Operating System as an Execution Environment for the

purposes of management is implementation specific.

II.5 Fault Model

Faults can occur at a number of steps in the software module process. The following sections

discuss Deployment Unit faults and Execution Unit faults.

II.5.1 DU Faults

There are two basic types of DU faults: Operation failures and CWMP faults. CWMP faults

come as a response to the ChangeDUState RPC itself; because of the atomic nature of CWMP

methods, the entire method fails and none of the Operations included in the RPC are attempted.

Operation failures are those faults that are reported in the FaultStruct of the

DUStateChangeComplete method. Because the results RPC enables reporting of faults on each

Operation, it is possible for one Operation to fail and another to execute successfully.

II.5.1.1 Install Faults

Most Install faults will be recognized before resources or instances are created on the device.

When there is an Operation failure at Install, there are no resources installed on the device and no

DU (or EU) instances are created in the data model. Similarly, if there are any Operation

failures, besides System Resources Exceeded, there are no resources installed on the device and

no DU (or EU) instances created in the data model.

The CWMP Faults defined for Install (Method Not Supported, Request Denied, and Internal

Error) are general errors supported by most RPCs. One special CWMP fault to note is the

Resources Exceeded error, which is used when there are too many Operations specified in the

request. This error is not used to indicate that the DU has insufficient resources to support the

DU file itself; this is rather indicated by the System Resources Exceeded fault discussed below.

The Resources Exceeded error is not a valid error if 16 or fewer Operations are requested.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 48 of 64

There are a number of Operation failures defined for Installation. The first category is those

faults associated with the file server or attempt to transfer the DU resource and are the same as

those defined for the existing Download method. These include:

¶ Userinfo element being specified in the URL

¶ The URL being unavailable (either because the host cannot be reached or because the

resource is unavailable)

¶ Authentication failures due to incorrectly supplied credentials

¶ The URL transport method specified not being supported by the CPE or server

¶ The file transfer being interrupted (because of a device reboot or loss of connectivity, for

example)

The second category of faults relate to issues with the DU and the Execution Environment.

These are specific to Software Module Management and include:

¶ The EE reference specified by the ACS in the request not existing in the data model.

Note that the ACS can simply omit the EE reference in the request and allow the CPE to

choose the destination.

¶ The EE being disabled. This fault can occur when the request explicitly specifies a

disabled EE. If there is no EE specified in the request, this fault could occur because the

only possible destination EE for the DU (the only OSGi framework instance in the case

of an OSGi bundle, for example) is disabled. The CPE is expected to make every attempt

not to use a disabled EE in this scenario, however.

¶ Any mismatch existing between the DU and the EE (attempting to install a Linux

package on an OSGi framework instance, for example). This fault can occur when the

request explicitly specifies a mismatching EE. If there is no EE specified in the request,

this fault could occur when there is no EE at all on the device that can support the DU.

¶ A DU of the same version already existing on the EE.

Finally there are a number of faults related to the DU resource itself. These include:

¶ The UUID in the request not matching the format specified in RFC 4122 [7] version 3

(Name-based).

¶ A corrupted DU resource, or the DU not being installable for other reasons, such as not

being signed by any trusted entity

¶ The installation of the DU requiring more system resources, such as disk space, memory,

etc., than the device has available. Note that this error is not to be used to indicate that

more operations have been requested than the device can support, which is indicated by

the Resourced Exceeded CWMP fault (described above).

II.5.1.2 Update Faults

When there is a fault on an Update operation of any kind, either CWMP or Operation failure, the

DU remains at the version it was before the attempted DU state change, and it also remains in the

Installed state (i.e., it is not Uninstalled). If for any reason the ACS wishes to remove a DU after

an unsuccessful Update, it must do so manually using an Uninstall operation in the

ChangeDUState method. When there is a CWMP fault at Update, there are no new resources

installed on the device and no DU (or EU) instances are changed in the data model. Similarly, if

there are any Operation failures, besides System Resources Exceeded, there are no new resources

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 49 of 64

installed on the device and no DU (or EU) instances are changed in the data model. The state of

any associated EUs or any dependent EUs in the event of an Update failure is EE and

implementation dependent.

As with Install, the CWMP Faults defined for Update (Method Not Supported, Request Denied,

and Internal Error) are general errors supported by most RPCs. One special CWMP fault to note

is the Resources Exceeded error, which is used when there are too many Operations specified in

the request. This error is not used to indicate that the DU has insufficient resources to support

the DU file itself; this is rather indicated by the System Resources Exceeded fault discussed

below. The Resources Exceeded error is not a valid error if 16 or fewer Operations are

requested.

There are a number of Operation failures defined for Update. The first category is those faults

associated with the file server or attempt to transfer the DU resource and are the same as those

defined for the existing Download method. These include:

¶ Userinfo element being specified in the URL

¶ The URL being unavailable (either because the host cannot be reached or because the

resource is unavailable)

¶ Authentication failures due to incorrectly supplied credentials

¶ The URL transport method specified not being supported by the CPE or server

¶ The file transfer being interrupted (because of a device reboot or loss of connectivity, for

example)

The second category of faults relate to issues with the DU and the Execution Environment.

These are specific to Software Module Management and include:

¶ The EE on which the targeted DU resides being disabled. This fault can occur when the

request explicitly specifies the UUID of a DU on a disabled EE or when the request

explicitly specifies a URL last used by a DU on a disabled EE. If neither the URL nor

UUID was specified in the request, this fault can occur when at least one DU resides on a

disabled EE.

¶ Any mismatch existing between the DU and the EE. This fault occurs when the content

of the updated DU does not match the EE on which it resides (for example, an attempt is

made to Update a Linux package with a DU that is an OSGi bundle).

¶ Updating the DU would cause it to have the same version as a DU already installed on

the EE.

¶ The version of the DU not being specified in the request when there are multiple versions

installed on the EE.

Note that Updates are atomic across all the EEs with which a DU resource is associated; i.e., an

Update is either successful across all EEs or unsuccessful across all EEs. For example, if an

attempt is made to Update a DU which is installed to 2 EEs, one enabled and one disabled, the

Update operation will fail for both. In this case, there would be 2 entries in the

DUStateChangeComplete Results array both showing an operation failure with the same

FaultCode and FaultString. In other words, the CPE would indicate that the failure occurred

because of a disabled EE, even for the DU instance residing on the enabled one.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 50 of 64

Finally there are a number of faults related to the DU resource itself. These include:

¶ The UUID in the request not matching the format specified in RFC 4122 [7] Version 3

(Name- Based).

¶ A corrupted DU resource, or the DU not being installable for other reasons, such as not

being signed by any trusted entity

¶ The DU cannot be found in the data model. This fault can occur when the request

explicitly specifies the UUID (or combination of UUID and version) of a DU that is

unknown. It can also occur when the request does not specify a UUID but explicitly

specifies a URL that has never been used to previously Install or Update a DU.

¶ Attempting to downgrade the DU version.

¶ Attempting to Update a DU not in the Installed state.

¶ Updating the DU requiring more system resources, such as disk space, memory, etc., than

the device has available. Note that this error is not to be used to indicate that more

operations have been requested than the device can support, which is indicated by the

Resourced Exceeded CWMP fault (described above).

II.5.1.3 Uninstall Faults

When there is an Uninstall fault of any kind, either CWMP or Operation failure, the DU does not

transition to the Uninstalled state and no resources are removed from the device. No changes are

made to the EU-related portions of the data model (including the EU objects themselves and the

related objects and parameters that came into existence because of this DU).

As with Install and Update, the CWMP Faults defined for Uninstall (Method Not Supported,

Request Denied, and Internal Error) are general errors supported by most RPCs. One special

CWMP fault to note is the Resources Exceeded error, which is used when there are too many

Operations specified in the request.

There are three Operation failures defined for Uninstall. They are as follows:

¶ The EE on which the targeted DU resides is disabled. Note that if the Uninstall operation

targets DUs across multiple EEs, this fault will occur if at least one of the EEs on which

the DU resides is disabled.

¶ The DU cannot be found in the data model. If the EE is specified in the request, this

error occurs when there is no UUID (or UUID and version) matching the one requested

for the specified EE. If there is no EE specified in the request, this error occurs when

there is no UUID matching the one in the requested on any EE in the data model, or, if

the version is also specified in the request, then this error occurs when there is no DU

with this combination of UUID and version on any EE in the data model.

¶ The UUID in the request not matching the format specified in RFC 4122 [7] Version 3

(Name- Based).

¶ The DU caused an EE to come into existence on which at least 1 DU is Installed.

II.5.2 EU Faults

EU state transitions are triggered by the SetParameterValues RPC. One type of EU fault is a

CWMP fault sent in response to SetParameterValues. The CWMP faults defined are therefore

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 51 of 64

simply a subset of the errors defined for the generic SetParameterValues: Request Denied,

Internal Error, Invalid Arguments, Invalid Parameter Name, Invalid Parameter Type, and Invalid

Parameter Value.

Note that there is one case specific to Software Module Management: if the ACS tries to Start an

EU on a disabled EE, the device returns a CWMP fault to that request. In this case the CPE

indicates the reason behind this fault by using 9007 in the SetParameterValuesFault structure.

Because of the atomic nature of CWMP methods, if any parameter is in error in a

SetParameterValues request, the entire method fails and none of the requested changes are made.

There are also Software Module Management specific faults indicated in the

ExecutionFaultCode and ExecutionFaultMessage parameters in the data model. In addition to

providing software module specific fault information, this parameter is especially important in a

number of scenarios:

1. Asynchronous errors in the EU state transition. For example, it is possible that the CPE

needs to do actions such as dependency checking that require more time than available in

the context of a CWMP session. In this case it is possible that the device responds

successfully to the SetParameterValues request, but later indicates that the EU is in error,

with the Error Code Dependency Failure. There is also no expectation that the CPE

would retry any EU state transitions triggered by a SetParameterValues request; i.e., if a

device responds successfully to the CWMP request to Start an EU, but later finds the EU

in error, the CPE would not attempt to retry Starting the EU.

2. Errors that occur at a later date than the original CWMP request, such as a Dependency

Failure that occurs several days after successful Start of an EU because a DU providing

dependencies is later Uninstalled.

3. State transition errors that are triggered by the Autostart/Run level mechanism.

4. "Autonomous" state transitions triggered outside the purview of CWMP, such as by a

LAN-side protocol.

The faults in the ExecutionFaultCode parameter are defined as follows:

¶ FailureOnStart – the EU failed to start despite being requested to do so by the ACS.

¶ FailureOnAutoStart – the EU failed to start when enabled to do so automatically.

¶ FailureOnStop – the EU failed to stop despite being requested to do so by the ACS.

¶ FailureWhileActive – an EU that had previously successfully been started either via an

explicit transition or automatically later fails.

¶ DependencyFailure – this is a more specific fault scenario in which the EU is unable to

start or stops at a later date because of unresolved dependencies

¶ Unstartable – some error with the EU resource, its configuration, or the state of the

associated DU or EE, such as the EE being disabled, prevents it from being started.

When the EU is not currently in fault, this parameter returns the value NoFault. The

ExecutionFaultMessage parameter provides additional, implementation specific information

about the fault in question.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 52 of 64

The ExecutionFaultCode and ExecutionFaultMessage parameters are triggered parameters. In

other words, it is not expected that an ACS could read this parameter before issuing a

SetParameterValues request and see that there was a Dependency Failure that it would attempt to

resolve first.

Notifications are used if the ACS wants to be notified of ongoing changes to the EU’s error state.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 53 of 64

Appendix III. Location Management

This section discusses the Theory of Operation for Location Management using TR-069 [1] and

the Location object defined in the <rootobject>.DeviceInfo data model.

III.1 Overview

The Location object defined in this document is a multi-instance object that can be used by any

device that needs to be able to acquire and/or express its "location."

This Location object is a multi instance object to account for the fact that a Device can acquire

location information in more than one way. Location info can be acquired by:

¶ GPS/AGPS, i.e. provided by specific on-board circuitry such as GPS or AGPS;

¶ Manual, i.e. manually configured via the Device local GUI

¶ External, i.e. remotely configured via a number of protocols, including e.g. TR-069

Location objects can be created autonomously by the device, based on the location information it

receives or by CWMP. When the Location object is created autonomously by the device, the

device itself will fill the DataObject parameter with location data coming from GPS/AGPS, local

GUI or an external protocol (not CWMP). When created by CWMP, it is up to the CWMP

protocol to configure the DataObject parameter. Regardless of how a Location object is created,

the device is responsible for populating the values of all of the location metadata (i.e., all

parameters except the DataObject that contains the location information and the AcquiredTime)

not writable by any external mechanism.

When a Location object is updated, the object can only be updated through the same mechanism

that created it. The device will update the AcquiredTime as necessary and place the updated

location data in the DataObject.

When a Location object is deleted, the object can only be deleted through the same mechanism

that created it.

III.2 Multiple Instances of Location Data

Devices that need to make use of location data will need to have rules around how to deal with

multiple instances of location data. These rules are out of scope for TR-069 and the proposed

data model. These rules can need to be specific to a particular application. For example, if a

VoIP device chooses to send location data in a SIP message, the device can include all of the

instances of DataObject in that message, order the Locations Objects according to the acquisition

date and time (parameter AcquiredDateTime, most recent is first) or order the Location objects

according to some sort of protocol preference, such as GPS, AGPS, DHCP, HELD, TR-069, and

then all others according to acquisition date and time.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 54 of 64

A Femtocell Access Point (FAP) with multiple sources of location can also need rules for use of

the Location object. If it must make decisions locally based on location, the FAP will need rules

to determine the preferred location. If the FAP must send its location elsewhere, the FAP will

need rules to determine whether the FAP sends all of its location data, or selects certain locations

based on specific criteria.

III.3 TR-069, Manual, GPS, and AGPS Configured Location

As noted in the description of the TR-069 parameter <rootObject>.Location.{i}.DataObject.,

Manual, GPS, and AGPS mechanisms are formatted by the device according to the following

formats specified by the IETF. An ACS that is creating an External:CWMP location will also use

one of these formats:

1. Geographical coordinates formatted according to the XML syntax specified in IETF

RFC5491[8] (update of RFC4119[10])

2. Civic addresses according to the XML syntax specified in IETF RFC5139 [9] (update of

RFC4119[10])

Location information in these IETF RFCs is specified within the IETF framework of presence

information. While these IETF RFCs specify presence information different from the Location

component model assumed in the TR-069 framework, the IETF data format is adopted by BBF

independent of these higher level differences.

IETF defines its XML syntax for geographical information as a subset of presence information

(<presence> object in the XML example below), generally related to a device (<device> object)

or a user (<user> object). IETF location information is represented using a Presence Information

Data Format Location Object (PIDF-LO). This is represented as the <geopriv> object in the

XML example below.

III.3.1 Example: Manual, GPS, AGPS, and External:CWMP
<rootObject>.Location.{i}. DataObject. Format

This example, modified from an example in RFC5491, explains how to format location

information in a <rootObject>.Location.{i}.DataObject. parameter with both geographical

coordinates and civic location information according to the above-referenced IETF RFCs. The

schema associated with the civic location namespace

"urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr" is specified in RFC5139 [9].
<presence xmlns= " urn:ietf:params:xml:ns:pidf "

xmlns:dm= " urn:ietf:params:xml:ns:pidf:d ata - model "

xmlns:gp= " urn:ietf:params:xml:ns:pidf:geopriv10 "

xmlns:gml= " http://www.opengis.net/gml "

xmlns:cl= " urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr "

entity= " " >

<dm:device id= " FFFFFF- FAP- 123456789 " >

<gp:geopriv>

<gp:location - info>

<gml:Point srs Name=" urn:ogc:def:crs:EPSG::4326 " >

<gml:pos> - 43.5723 153.21760</gml:pos>

</gml:Point>

<cl:civicAddress>

<cl:FLR>2</cl:FLR>

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 55 of 64

</cl:civicAddress>

</gp:location - info>

<gp:usage - rules/>

<gp:method>Wiremap</gp:method>

</gp:geopriv>

<dm:deviceID> mac:8asd7d7d70 </dm :deviceID>

<dm:timestamp>2007 - 06- 22T20:57:29Z</dm:timestamp>

</dm:device>

</presence>

III.3.2 RFC5491 and RFC5139 Location Element Definitions

The XML elements are defined as follows by the IETF in RFC5491 [8] and related documents:

1. <presence> (RFC5491 [8])

The <presence> element MUST have an 'entity' attribute. The value of the 'entity'

attribute is the 'pres' URL of the presentity publishing this presence document.

The<presence> element MUST contain a namespace declaration ('xmlns') to indicate the

namespace on which the presence document is based. The presence document compliant

to this specification MUST have the namespace 'urn:ietf:params:xml:ns:pidf:'. It MAY

contain other namespace declarations for the extensions used in the presence XML

document.

2. <device> (RFC5491 [8])

The <device> element […] can appear as a child to <presence>. There can be zero or

more occurrences of this element per document. Each <device> element has a mandatory

"id" attribute, which contains the occurrence identifier for the device. In the TR-069

framework the id attribute will contain the CWMP Identifier of the device, in the form

OUI-ProductClass-SerialNumber.

3. <geopriv> (RFC5491 [8], RFC5139 [9])

Location information in a PIDF-LO can be described in a geospatial manner based on a

subset of Geography Markup Language (GML) 3.1.1 or as civic location information

specified in RFC5139[9]. The PIDF-LO Geodetic Shapes specification provides a

specific GML profile for expressing commonly used shapes using simple GML

representations. This profile defines eight shape types, the simplest ones being a 2-D and

a 3-D Point. The PIDF-LO Geodetic Shapes specification also mandates the use of the

World Geodetic System 1984 (WGS84) coordinate reference system and the usage of

European Petroleum Survey Group (EPSG) code 4326 (as identified by the URN

urn:ogc:def:crs:EPSG::4326) for two-dimensional (2d) shape representations and EPSG

4979 (as identified by the URN urn:ogc:def:crs:EPSG::4979) for three-dimensional (3d)

volume representations.

Each <geopriv> element must contain at least the following two child elements:

<location-info> element and <usage-rules> element. One or more elements containing

location information are contained inside a <location-info> element.

a. <location-info> element can contain one or more elements bearing location

information.

i. <Point> element contains geographical data in the coordinate system

specified by its srsName attribute. In the example above (WGS84/EPSG

4326), the syntax is latitude, longitude expressed in degrees

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 56 of 64

ii. Civic information elements are specified by IETF and can be added to the

geographical data, though mixing information is not recommended.

iii. <relative-location> element is being proposed by IETF

b. <usage-rules> can contain the following optional elements:

i. <retransmission-allowed>: When the value of this element is 'no', the

recipient of this Location Object is not permitted to share the enclosed

Location Information, or the object as a whole, with other parties.

RFC4119 [10] specifies that "by default, the value MUST be assumed to

be 'no'".

ii. <retention expires>: This field specifies an absolute date at which time the

Recipient is no longer permitted to possess the location information

iii. <external ruleset>: This field contains a URI that indicates where a fuller

ruleset of policies, related to this object, can be found

iv. <notewell>: This field contains a block of text containing further generic

privacy directives.

c. <method> is an optional element that describes the way that the location

information was derived or discovered. Values allowed by RFC4119 [10] are

stored in the IANA registry as "Method Tokens" [12]. The "Wiremap" value

listed in the example is described as "Location determined using wiremap

correlations to circuit identifiers "

4. <deviceID> element is mandatory. It contains a globally unique identifier, in the form of

a URN, for each of the presentity devices (RFC4479[13])

5. <timestamp> is optional (RFC4479[13])

III.3.3 Use of RF C5491 and RFC5139 Location XML Elem ents in TR-069

1. <presence>

The entity attribute conveys no useful information and its value should be conventionally set

to an empty string.

2. <device>

In RFC5491[8]this is one of the devices associated to the presentity. Devices are identified in

the presence document by means of an instance identifier specified in the id attribute.

3. <geopriv>

a. <location-info>

2-D geographical coordinates with no additional civic information are sufficient in the

simplest case.

i. <Point>

For 2-D applications the value of the srsName attribute should be set to the specified value

"urn:ogc:def:crs:EPSG::4326"

b. <usage-rules>

ii. <retransmission-allowed>

Note that this field is not intended as instruction to the device whose location this is.

Rather, it is intended to provide instruction to other systems that the device sends its

location to (via SIP or other mechanisms). Therefore, the device will need to maintain its

own policy (no standardized TR-069 data model is provided for this) as to when and

where to send its location to others, and how to set this parameter when transmitting this

location information. The device can choose to set this parameter to "yes" or to "no"

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 57 of 64

when sending its location to others. RFC4119[10] specifies that this elementôs default

value is "no".

c. <method> If this location object is being created by the device as a result of GPS, AGPS,

or Manual mechanisms, the <method> parameter will be populated with "GPS", "A-GPS", or

"Manual", respectively. If the location object is being created by External:CWMP, then this

parameter will not be used or populated by the ACS.

4. <deviceID> It contains a globally unique identifier, in the form of a URN, for each of the

presentity devices (RFC4479 [13]).

5. <timestamp> is optional. The device (GPS, AGPS, Manual) or ACS (External:CWMP) can

set this to the time the location was set or acquired.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 58 of 64

Appendix IV. Fault Management

This section discusses the Theory of Operation for Fault Management using TR-069 [1] and the

FaultMgmt object defined in the Root data model.

IV.1 Overview

There are four types of alarm event handling:

Expedited Event Alarm event is immediately notified to the ACS with the use of Active

Notification mechanism

Queued Event Alarm event is notified to the ACS at the next opportunity with the use

of Passive Notification mechanism

Logged Event The CPE stores the alarm event locally but does not notify the ACS

Disabled Event The CPE ignores the alarm event and takes no action

Note that all Fault Management tables are cleared when the device reboots.

Table 4 shows the multi-instance objects for FM to manage the alarm events.

Table 4 ï FM Object Definition

Object name

(<rootobject>.Fault

Mgmt.)

Table

size

Content Purpose and usage

SupportedAlarm.{i}

.

Fixed Static &

fixed content

Defines all alarms that the CPE supports.

ReportedMechanism defines how the alarm

is to be handled within the CPE: 0 ï

Expedited, 1 ï Queued, 2 ï Logged, 3 ï

Disabled

The table size is fixed and its content is

static in order to drive the alarm handling

behavior in the CPE.

ExpeditedEvent.{i}. Fixed Dynamically

updated

Contains all "Expedited" type alarm events

since the last device initialization. This

includes events that are already reported or

not yet reported to the ACS. One entry

exists for each event. In other words, raising

and clearing of the same alarm are two

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 59 of 64

Object name

(<rootobject>.Fault

Mgmt.)

Table

size

Content Purpose and usage

separate entries. As the table size is fixed

(vendor defined), new alarm event

overwrites the oldest entry in FIFO fashion

after the table becomes full.

QueuedEvent.{i}. Fixed Dynamically

updated

Contains all "Queued" type alarm events

since the last device initialization. This

includes events that are already reported or

not yet reported to the ACS. One entry

exists for each event. In other words, raising

and clearing of the same alarm are two

separate entries.

As the table size is fixed (vendor defined),

new alarm event overwrites the oldest entry

in FIFO fashion after the table becomes full.

CurrentAlarm.{i}. Variable Dynamically

updated

Contains all the currently active alarms (i.e.

outstanding alarms that are not yet cleared)

since the last device initialization. When an

outstanding alarm is cleared, that entry is

deleted from this table. Therefore, only 1

entry exists for a given unique alarm.

ACS can retrieve the content of this table to

get the entire view of the currently

outstanding alarms.

As this is a variable size table, the size

changes as alarm event is raised and cleared.

If maximum entries for this table are

reached, the next event overrides the object

with instance number 1. Subsequent entries

override objects at sequentially increasing

instance numbers. This logic provides for

automatic "rolling" of records.

When a new alarm replaces an existing

alarm, then all parameter values for that

instance are considered as changed for the

purposes of value change notifications to the

ACS (even if their new values are identical

to those of the prior alarm).

HistoryEvent.{i}. Fixed Dynamically

updated

Contains all alarm events as a historical

record keeping purpose. One entry exists

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 60 of 64

Object name

(<rootobject>.Fault

Mgmt.)

Table

size

Content Purpose and usage

for each event. In other words, raising and

clearing of the same alarm are two separate

entries.

The ACS can retrieve the content of this

table to get the entire chronological history

of the alarm events on the CPE.

As the table size is fixed (vendor defined),

new alarm event overwrites the oldest entry

in FIFO fashion after the table becomes full.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 61 of 64

Table 5 shows the timing of when an entry is to be created/updated/deleted.

Table 5 ï FM Object Usage

Object name

(<rootobject>.Faul

tMgmt.)

Timing of a new

entry to be created

Timing of an

existing entry to be

updated

Timing of an

existing entry to be

deleted

ExpeditedEvent.{i}

.

When a new event

of "Expedited"

type occurs (i.e.

raise a new alarm

or clear an existing

alarm)

Never (i.e. once an

entry is made, the

content is not

changed)

The only exception

is that when the

table is rolling over

in a FIFO fashion,

the entry will be

over-written.

Never (i.e. once

created, the content

is never deleted)

QueuedEvent.{i}. When a new event

of "Queued" type

occurs (i.e. raise a

new alarm or clear

an existing alarm)

Never (i.e. once an

entry is made, the

content is not

changed)

The only exception

is that when the

table is rolling over

in a FIFO fashion,

the entry will be

over-written.

Never (i.e. once

created, the content

is never deleted)

CurrentAlarm.{i}. When a new alarm

(all types except

Disabled events) is

raised

When the alarm

status changes

When the alarm is

cleared

HistoryEvent.{i}. When a new event

of all types except

Disabled type

occur (i.e. raise a

new alarm or clear

an existing alarm)

Never (i.e. once an

entry is made, the

content is not

changed)

The only exception

is that when the

table is rolling over

in a FIFO fashion,

the entry will be

over-written.

Never (i.e. once

created, the content

is never deleted)

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 62 of 64

IV.1.1 Expedited Event

Figure 7 shows the expedited event handling. All alarms in the "expedited" type are stored in

<rootobject>.FaultMgmt.ExpeditedEvent.{i}. multi-instance object and notified to the ACS using

Active Notification mechanism by immediately establishing a TR-069 session with the ACS.

Alarms are also stored in <rootobject>.FaultMgmt.CurrentAlarm.{i}. and

<rootobject>.FaultMgmt.HistoryEvent.{i}.

Figure 7 ï Expedited Event Handling

IV.1.2 Queued Event

Figure 8 shows the queue event handling. All alarms in the "queued" type are stored in.

<rootobject>.FaultMgmtQueuedEvent.{i}. multi -instance object. It is notified to the ACS using

Passive Notification mechanism. In this case, the event is notified to the ACS at the next TR-

069 session establishment.

Alarms are also stored in <rootobject>.FaultMgmt.CurrentAlarm.{i}. and

<rootobject>.FaultMgmt.HistoryEvent.{i}.

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 63 of 64

Figure 8 ï Queued Event Handling

IV.1.3 Logged Event

Figure 9 shows the logged event handling. All alarms in the "logged" type are stored only in the

<rootobject>.FaultMgmt.CurrentAlarm.{i}. and <rootobject>.FaultMgmt.HistoryEvent.{i}.

Alarms of this type are not reported to the ACS.

Figure 9 ï Logged Event Handling

Component Objects for CWMP TR-157 Issue 1 Amendment 10

November 2015 © The Broadband Forum. All rights reserved Page 64 of 64

End of Broadband Forum Technical Report TR-157

	Executive Summary
	1 Purpose and Scope
	1.1 Purpose
	1.2 Scope

	2 References and Terminology
	2.1 Conventions
	2.2 References
	2.3 Definitions
	2.4 Abbreviations

	3 Technical Report Impact
	3.1 Energy Efficiency
	3.2 IPv6
	3.3 Security

	4 CWMP Common Component Parameter Definitions
	Annex A: HTTP Bulk Data Collection
	A.1 Overview
	A.2 Enabling HTTP/HTTPS Bulk Data Communication
	A.2.1 Use of the URI Query Parameters
	A.2.2 Use of HTTP Status Codes
	A.2.2.1 HTTP Retry Mechanism
	A.2.3 Use of TLS and TCP

	A.3 Encoding of Bulk Data
	A.3.1 Using Wildcards to Reference Object Instances in the Report
	A.3.2 Using Alternative Names in the Report
	A.3.2.1 Using Object Instance Wildcards and Parameter Partial Paths with Alternative Names
	A.3.3 Processing of Content for Failed Report Transmissions
	A.3.4 Encoding of CSV Bulk Data
	A.3.4.1 Defining the Report Layout of the Encoded Bulk Data
	A.3.4.2 Layout of Content for Failed Report Transmissions
	A.3.5 Encoding of JSON Bulk Data
	A.3.5.1 Defining the Report Layout of the Encoded Bulk Data
	A.3.5.2 Layout of Content for Failed Report Transmissions
	A.3.5.3 Using the ObjectHierarchy Report Format
	A.3.5.4 Using the NameValuePair Report Format
	A.3.5.5 Translating Data Types

	A.4 Report Examples
	A.4.1 CSV Encoded Report Examples
	A.4.1.1 CSV Encoded Reporting Using ParameterPerRow Report Format
	A.4.1.2 CSV Encoded Reporting Using ParameterPerColumn Report Format
	A.4.2 JSON Encoded Report Example

	Appendix I. USB Host Theory of Operation
	I.1 Overview

	Appendix II. Software Module Management
	II.1 Overview
	II.2 Lifecycle Management
	II.3 Software Modules
	II.4 Execution Environment Concepts
	II.5 Fault Model

	Appendix III. Location Management
	III.1 Overview
	III.2 Multiple Instances of Location Data
	III.3 TR-069, Manual, GPS, and AGPS Configured Location

	Appendix IV. Fault Management
	IV.1 Overview

